Homomorphisms of Convolution Algebras

Ross Stokke

Waterloo, August 4 2011

The Homomorphism Problem

Describe all (bounded) homomorphisms

$$\varphi: L^1(F) \to M(G).$$

- 1950's Helson, Rudin, Wendel, Glicksberg and many others.
- ▶ Paul Cohen, 1960 When F and G are abelian he gave a complete characterization of all homomorphisms

$$\varphi: L^1(F) \cong A(\widehat{F}) \to M(G) \cong B(\widehat{G}).$$

When F or G is nonabelian, there are two homomorphism problems:

- Describe all homoms $\varphi: L^1(F) \to M(G)$.
- Describe all homoms $\varphi: A(F) \to B(G)$.

Homomorphisms $\varphi: A(F) \to B(G)$?

- Walter 72: $A(F) \cong A(G)$, $B(F) \cong B(G)$.
- Lau-Losert 93 $B_r(F) \cong B_r(G)$, $UCB(\widehat{F})^* \cong UCB(\widehat{G})^* \Leftrightarrow F \cong G$.
- Host 86 F virtually abelian, $\varphi: A(F) \to B(G)$.
- Ilie 04, Ilie-Spronk 05 F amenable $\varphi : A(F) \rightarrow B(G)$ cb.
- Ilie-S 2008 F amenable, $\varphi: B(F) \to B(G)$ cb, wk*-continuous.
- Ilie-S 2009 F amenable, $\varphi: \mathfrak{X}(F)^* \to \mathfrak{X}_G^*$ cb, wk*-conts extensions of $\varphi: A(F) \to B(G)$.
- Pham 2010 $\varphi: A(F) \to B(G)$ contractive.

The above results all perfectly extend or complement Cohen's original theorem.

Homomorphisms $\varphi: L^1(F) \to M(G)$?

- 50's, 60's, 70's: Helson, Rudin, Glicksberg, Cohen, Greenleaf and many others.
- Wendel '52 Isomorphisms $\varphi:L^1(F)\cong L^1(G)$
- Johnson 64, Strichartz 65 Isomorphisms $\varphi:M(F)\cong M(G)$ (Determined by $\alpha\in\widehat{F}^1$ and a top isomorphism $\phi:F\cong G$).
- Gharamani, Lau, Losert, Mckennon, McClure, Dales, Strauss, 80's, 90's, 00's

$$LUC(F)^* \cong LUC(G)^*, \ L^1((F)^{**} \cong L^1(G)^{**}, \ M(F)^{**} \cong M(G)^{**}$$
 if and only if $F \cong G$.

- Kalton-Wood 76 Isomorphisms $\varphi:L^1(F)\to L^1(G)$ with $\|\varphi\|\leq \sqrt{2}.$ (They are isometric.)
- Wood 70's, 80's, 90's, 00's More on "small" isomorphisms.

Homomorphisms $\varphi: L^1(F) \to M(G)$?

Let F and G be arbitrary locally compact groups.

- Greenleaf 65 Contractive homomorphisms $\varphi: L^1(F) \to M(G)$.
- Greenleaf's characterization is less tractable than Cohen's.
- Since 1965, no progress has been made in the non-contractive, non-isomorphic case.

Notation Throughout, F, G and H are lcg's.

ullet The Eberlein algebra of G is

$$E(G) = \text{uniform closure of } B(G);$$

B(G) is the Fourier-Stieltjes algebra of G:

$$B(G) = \{ \xi *_{\pi} \eta : \{ \pi, \mathcal{H}_{\pi} \} \in \Sigma(G) \ \xi, \eta \in \mathcal{H}_{\pi} \}$$

where

$$\xi *_{\pi} \eta(s) = \langle \pi(s)\xi | \eta \rangle \qquad (s \in G).$$

Notation Throughout, F, G and H are lcg's.

ullet The Eberlein algebra of G is

$$E(G) = \text{uniform closure of } B(G);$$

B(G) is the Fourier-Stieltjes algebra of G:

$$B(G) = \{ \xi *_{\pi} \eta : \{ \pi, \mathcal{H}_{\pi} \} \in \Sigma(G) \ \xi, \eta \in \mathcal{H}_{\pi} \}$$

- $A(G) \subseteq C_0(G) \subseteq E(G) \subseteq WAP(G) \subseteq LUC(G) \subseteq CB(G)$.
- $C_0(G)^* = M(G)$ is an involutive Banach algebra
- $E(G)^*$ is an involutive Banach algebra wrt Arens product

$$(n*m)(f) = n(m \cdot f); \quad m \cdot f(s) = m(f \cdot s); \quad f \cdot s = l_s f \quad (s \in G).$$

• $E(G)^* = M(G) \oplus_1 C_0(G)^{\perp}$.

lf

$$\varphi: L^1(F) \to M(G)$$

is a contractive homom, Cohen's theorem says that φ factors into a product of four basic homomorphisms with each factor falling into one of three types:

• Let
$$\alpha \in \widehat{F}^1$$
, $M_\alpha: C_0(F) \to C_0(F): f \mapsto \alpha f$,
$$A_\alpha = M_\alpha^*: M(F) \to M(F): \mu \mapsto \alpha \mu$$

is an isometric isomorphism.

• Let $\alpha \in \widehat{F}^1$, $M_\alpha : C_0(F) \to C_0(F) : f \mapsto \alpha f$, $A_\alpha = M_\alpha^* : M(F) \to M(F) : \mu \mapsto \alpha \mu$

is an isometric isomorphism.

• For K a compact normal subgroup of H,

$$S_K : C_0(H) \to C_0(H/K), \quad S_K f(xK) = \int_K f(xk) dm_K(k),$$

$$S_K^*: M(H/K) \hookrightarrow M(H)$$

is an isometric homomorphic embedding such that

$$S_K^*(\delta_{xK}) = \delta_x * m_K.$$

• Let $\theta: F \to H$ be a continuous homomorphism,

$$j_{\theta}: C_0(H) \to E(F): f \mapsto f \circ \theta,$$

$$j_{\theta}^*: E(F)^* \to M(H).$$

Recall $E(F)^* = M(F) \oplus_1 C_0(F)^{\perp}$. I will abuse notation and also write

$$j_{\theta}^* = j_{\theta}^*|_{M(F)} : M(F) \to M(H).$$

• Let $\theta: F \to H$ be a continuous homomorphism,

$$j_{\theta}: C_0(H) \to E(F): f \mapsto f \circ \theta,$$

$$j_{\theta}^*: E(F)^* \to M(H).$$

Recall $E(F)^* = M(F) \oplus_1 C_0(F)^{\perp}$. I will abuse notation and also write

$$j_{\theta}^* = j_{\theta}^*|_{M(F)} : M(F) \to M(H).$$

 $j_{\theta}^*: E(F)^* \to M(H)$ and $j_{\theta}^*: M(F) \to M(H)$ are the unique $w^* - w^*$ conts and $so - w^*$ conts, contractive, positive homomorphisms satisfying

$$\varphi(\delta_x) = \delta_{\theta(x)} \qquad (x \in F).$$

• Let $\theta: F \to H$ be a continuous homomorphism,

$$j_{\theta}: C_0(H) \to E(F): f \mapsto f \circ \theta,$$

$$j_{\theta}^*: E(F)^* \to M(H).$$

Recall $E(F)^* = M(F) \oplus_1 C_0(F)^{\perp}$. I will abuse notation and also write

$$j_{\theta}^* = j_{\theta}^*|_{M(F)} : M(F) \to M(H).$$

Let H be a closed subgroup of G,

$$R_H:C_0(G)\to C_0(H):f\mapsto f|_{H}$$
.

$$R_H^*: M(H) \hookrightarrow M(G)$$

is an isometric homomorphic embedding.

Cohen's theorem (contractive case)

Let F and G be LCA groups, $\varphi: A(F) \to B(G)$ a contractive homomorphism. Then there exist

- $u \in F$ and $r \in G$;
- an open subgroup G_0 of G; and
- a continuous homomorphism $\theta:G_0\to F$

such that $\varphi = l_r \circ s \circ j_\theta \circ l_u$.

$$\varphi = l_r \circ s \circ j_\theta \circ l_u.$$

$$\begin{array}{c|c}
A(F) & \xrightarrow{\varphi} & B(G) \\
\downarrow l_u & & \downarrow l_r \\
A(F) & \xrightarrow{j_{\theta}} & B(G_0) & \xrightarrow{s} & B(G)
\end{array}$$

$$l_r u(s) = u(rs); \ j_\theta u(s) = u(\theta(s)); \ su(s) = u(s) \ \text{on} \ G_0, \ 0 \ \text{off} \ G_0$$

Cohen's theorem (contractive case, dual version)

Using $A(\widehat{G})\cong L^1(G)$ and $B(\widehat{G})\cong M(G)$: Let F and G be LCA groups, $\varphi:L^1(F)\to M(G)$ a contractive homom. Then there exist

- $\alpha \in \widehat{F}^1$ and $\rho \in \widehat{G}^1$;
- a compact subgroup K of G; and
- a continuous homomorphism $\theta: F \to G/K$

such that
$$\varphi = A_{\rho} \circ S_K^* \circ j_{\theta}^* \circ A_{\alpha}$$
.

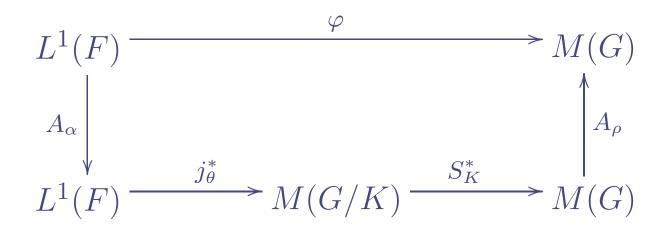
$$L^{1}(F) \xrightarrow{\varphi} M(G)$$

$$A_{\alpha} \downarrow \qquad \qquad \uparrow A_{\rho}$$

$$L^{1}(F) \xrightarrow{j_{\theta}^{*}} M(G/K) \subset S_{K}^{*} \xrightarrow{S_{K}^{*}} M(G)$$

Question 1 Kerlin-Pepe, Pacific JM 1975

• Does every contractive homomorphism $\varphi: L^1(F) \to M(G)$ have a Cohen factorization?



Note Greenleaf's characterization involves non-normal subgroups, non-closed subgroups, and maps that are not homomorphisms on their domains.

Question 1 Kerlin-Pepe, Pacific JM 1975

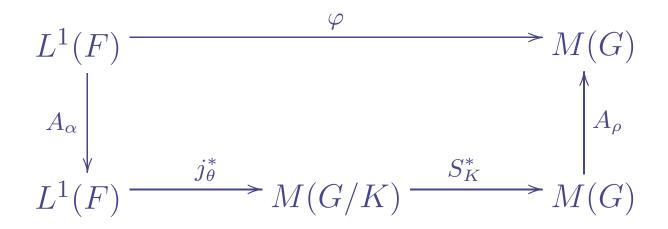
• Does every contractive homomorphism $\varphi: L^1(F) \to M(G)$ have a Cohen factorization?



Answer to 1 Yes if G abelian (Kerlin-Pepe).

Question 1 Kerlin-Pepe, Pacific JM 1975

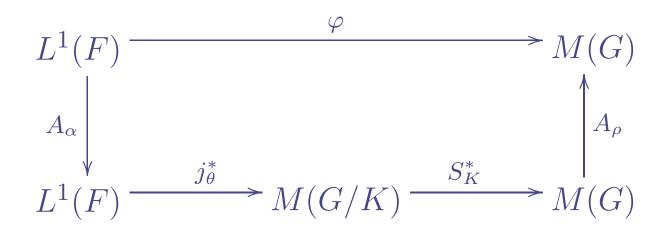
• Does every contractive homomorphism $\varphi: L^1(F) \to M(G)$ have a Cohen factorization?



Answer to 1 Yes if G abelian (Kerlin-Pepe). No in general (S).

Question 1 Kerlin-Pepe, Pacific JM 1975

• Does every contractive homomorphism $\varphi: L^1(F) \to M(G)$ have a Cohen factorization?

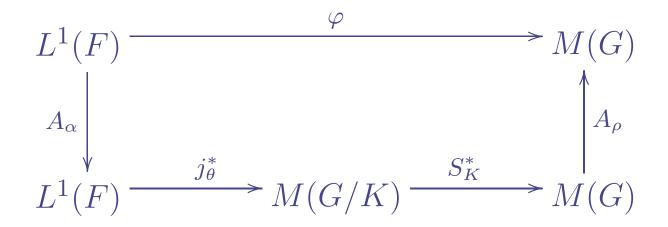


Answer to 1 Yes if *G* abelian (Kerlin-Pepe). No in general (S).

Question 2 Is there a characterization of contractive homomorphisms that shares the spirit of Cohen's theorem.

Question 1 Kerlin-Pepe, Pacific JM 1975

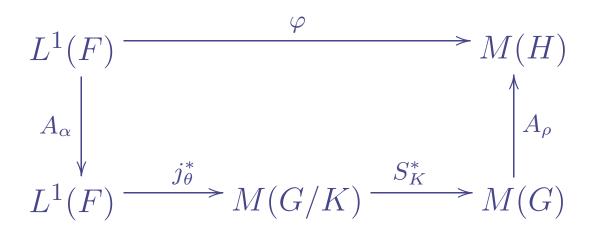
• Does every contractive homomorphism $\varphi: L^1(F) \to M(G)$ have a Cohen factorization?



Answer to 1 Yes if G abelian (Kerlin-Pepe). No in general (S).

Question 2 Is there a characterization of contractive homomorphisms that shares the spirit of Cohen's theorem. Answer to 2 Yes (S).

Question Kerlin-Pepe, Pacific JM 1975 Does every contractive homomorphism $\varphi: L^1(F) \to M(G)$ have a Cohen factorization?



• Let $K \lhd F$ be compact, $\rho \in \widehat{K}^1$ such that

$$\ker \rho \triangleleft F$$
 and $K/\ker \rho \subseteq Z(F/\ker \rho)$.

 $ho m_K$ is a central norm one idempotent (\sim Greenleaf), so

$$\varphi: L^1(F) \to M(F): f \mapsto f * \rho m_K$$

is a contractive homomorphism.

• Let $K \lhd F$ be compact, $\rho \in \widehat{K}^1$ such that

$$\ker \rho \lhd F$$
 and $K/\ker \rho \subseteq Z(F/\ker \rho)$.

 $ho m_K$ is a central norm one idempotent (\sim Greenleaf), so

$$\varphi: L^1(F) \to M(F): f \mapsto f * \rho m_K$$

is a contractive homomorphism.

• If φ has a Cohen factorization

$$\varphi = A_{\rho'} \circ S_L^* \circ j_\theta^* \circ A_\alpha,$$

then L=K and $\rho'\in \widehat{F}^1$ is such that $\rho'|_K=\rho$.

• Let $K \lhd F$ be compact, $\rho \in \widehat{K}^1$ such that

$$\ker \rho \triangleleft F$$
 and $K/\ker \rho \subseteq Z(F/\ker \rho)$.

 $ho m_K$ is a central norm one idempotent (\sim Greenleaf), so

$$\varphi: L^1(F) \to M(F): f \mapsto f * \rho m_K$$

is a contractive homomorphism.

• So choose K and $\rho \in \widehat{K}^1$ as above such that ρ does not extend to a character on F:

 $F = SU_2(\mathbb{C})$. Then $Z(F) = \mathbb{Z}_2$ and $\rho : \mathbb{Z}_2 \to \mathbb{T} : t \mapsto t$ does not extend continuously to F (Grosser-Moskowitz).

Let

$$\theta_H : \mathbb{T} \times H \to H : (\alpha, x) \mapsto x;$$

$$\alpha_{\mathbb{T}} : \mathbb{T} \times H \to \mathbb{T} : (\alpha, x) \mapsto \alpha \quad \text{so} \quad \alpha_T \in \widehat{\mathbb{T} \times H}^1.$$

Theorem(S) Let $\varphi:L^1(F)\to M(G)$ be a contractive homomorphism.

Theorem(S) Let $\varphi: L^1(F) \to M(G)$ be a contractive homomorphism. Then there exists

- a closed subgroup H of G;
- a compact normal subgroup N of $\mathbb{T} \times H$; and
- a continuous homomorphism $\theta: F \to \mathbb{T} \times H/N$ such that

$$\varphi = j_{\theta_H}^* \circ A_{\alpha_{\mathbb{T}}} \circ S_N^* \circ j_{\theta}^*.$$

$$L^1(F) \xrightarrow{\varphi} M(H) \hookrightarrow M(G)$$

$$j_{\theta_V}^* \downarrow \qquad \qquad \uparrow j_{\theta_H}^*$$

$$M(\mathbb{T} \times H/N) \stackrel{S_N^*}{\longleftrightarrow} M(\mathbb{T} \times H) \xrightarrow{A_{\alpha_{\mathbb{T}}}} M(\mathbb{T} \times H)$$

The converse holds.

Thm(S) Let $\varphi: L^1(F) \to M(G)$ be a contractive homom. \exists

- a closed subgroup H of G;
- a compact normal subgroup N of $\mathbb{T} \times H$; and
- a continuous homomorphism $\theta: F \to \mathbb{T} \times H/N$

such that
$$\varphi = j_{\theta_H}^* \circ A_{\alpha_T} \circ S_N^* \circ j_{\theta}^*$$
.

$$L^{1}(F) \xrightarrow{\varphi} M(H) \hookrightarrow M(G)$$

$$j_{\theta}^{*} \downarrow \qquad \qquad \uparrow j_{\theta_{H}}^{*}$$

$$M(\mathbb{T} \times H/N) \xrightarrow{S_{N}^{*}} M(\mathbb{T} \times H) \xrightarrow{A_{\alpha_{\mathbb{T}}}} M(\mathbb{T} \times H)$$

We may take $N = \Omega_{\rho} = \{(\rho(k), k) : k \in K\}$ for some $K \triangleleft H$, $\rho \in \widehat{K}^1$ such that $\ker \rho \triangleleft H$ and $K/\ker \rho \subseteq Z(H/\ker \rho)$.

First Tool: *-homomorphisms (not necessarily contractive)

• so =strict top on M(F) wrt $L^1(F) \lhd M(F)$

$$\mu_i \to \mu \text{ so } \Leftrightarrow \|f * \mu_i - f * \mu\|_1 \to 0 \ (f \in L^1(F)).$$

• Let $\iota_{\phi} \in M(G)$ be such that $\iota_{\phi}^2 = \iota_{\phi}$ and $\iota_{\phi}^* = \iota_{\phi}$,

$$\mathbb{M}_{\phi} = \{ \mu \in M(G) : \mu^* * \mu = \mu * \mu^* = \iota_{\phi}, \ \mu * \iota_{\phi} = \mu \}$$

with rel. wk*-topology.

 \mathbb{M}_{ϕ} is a semitopological group with conts inversion.

First Tool: *-homomorphisms (not necessarily contractive)

• so =strict top on M(F) wrt $L^1(F) \lhd M(F)$

$$\mu_i \to \mu \text{ so } \Leftrightarrow \|f * \mu_i - f * \mu\|_1 \to 0 \ (f \in L^1(F)).$$

• Let $\iota_{\phi} \in M(G)$ be such that $\iota_{\phi}^2 = \iota_{\phi}$ and $\iota_{\phi}^* = \iota_{\phi}$,

$$\mathbb{M}_{\phi} = \{ \mu \in M(G) : \mu^* * \mu = \mu * \mu^* = \iota_{\phi}, \ \mu * \iota_{\phi} = \mu \}$$

with rel. wk*-topology. \mathbb{M}_{ϕ} is a semitop group with conts inversion.

Theorem (S) ∃ a 1-1 correspondence between:

- bounded *-homoms $\varphi: L^1(F) \to M(G)$;
- $so-w^*$ conts bounded *-homoms $\varphi_m:M(F)\to M(G)$;
- $w^* w^*$ conts *-homoms $\varphi_{\varepsilon} : E(F)^* \to M(G)$;
- continuous, bounded homoms $\phi: F \to \mathbb{M}_{\phi}$.

First Tool: *-homomorphisms (not necessarily contractive)

• so =strict top on M(F) wrt $L^1(F) \lhd M(F)$

$$\mu_i \to \mu \text{ so } \Leftrightarrow \|f * \mu_i - f * \mu\|_1 \to 0 \ (f \in L^1(F)).$$

• Let $\iota_{\phi} \in M(G)$ be such that $\iota_{\phi}^2 = \iota_{\phi}$ and $\iota_{\phi}^* = \iota_{\phi}$,

$$\mathbb{M}_{\phi} = \{ \mu \in M(G) : \mu^* * \mu = \mu * \mu^* = \iota_{\phi}, \ \mu * \iota_{\phi} = \mu \}$$

with rel. wk*-topology. \mathbb{M}_{ϕ} is a semitop group with conts inversion.

Theorem (S) ∃ a 1-1 correspondence between:

- bounded *-homoms $\varphi: L^1(F) \to M(G)$;
- $so-w^*$ conts bounded *-homoms $\varphi_m:M(F)\to M(G)$;
- $w^* w^*$ conts *-homoms $\varphi_{\varepsilon} : E(F)^* \to M(G)$;
- continuous, bounded homoms $\phi: F \to \mathbb{M}_{\phi}$.

Let Γ be a subgroup of $(M(G),*)_{\|\cdot\|\leq 1}$ with wk*-topology. Greenleaf's Theorem

Let Γ be a subgroup of $(M(G), *)_{\|\cdot\| \le 1}$ with wk*-topology. Greenleaf's Theorem

• There is $K \leq G$ compact and $\rho \in \widehat{K}^1$ such that

$$e_{\Gamma} = \rho m_K$$
.

Let Γ be a subgroup of $(M(G), *)_{\|\cdot\| \le 1}$ with wk*-topology. Greenleaf's Theorem

• There is $K \leq G$ compact and $\rho \in \widehat{K}^1$ such that

$$e_{\Gamma} = \rho m_K$$
.

• There is a subgroup Ω of $\mathbb{T} \times G$, a compact normal subgroup Ω_{ρ} of Ω and a continuous group isomorphism

$$\phi: \Omega/\Omega_{\rho} \to \Gamma = \Gamma_{\Omega}: (\alpha, t)\Omega_{\rho} \mapsto \alpha \delta_t * \rho m_K$$

Let Γ be a subgroup of $(M(G),*)_{\|\cdot\|\leq 1}$ with wk*-topology. Greenleaf's Theorem

• There is $K \leq G$ compact and $\rho \in \widehat{K}^1$ such that

$$e_{\Gamma} = \rho m_K$$
.

• There is a subgroup Ω of $\mathbb{T} \times G$, a compact normal subgroup Ω_{ρ} of Ω and a continuous group isomorphism

$$\phi: \Omega/\Omega_{\rho} \to \Gamma: (\alpha, t)\Omega_{\rho} \mapsto \alpha \delta_t * \rho m_K$$

Theorem (S) The map

$$\phi: \Omega/\Omega_{\rho} \to \Gamma = \Gamma_{\Omega}: (\alpha, t)\Omega_{\rho} \mapsto \alpha \delta_t * \rho m_K$$

is a topological group isomorphism.

Let $\Gamma = \Gamma_{\Omega}$ be a contractive subgroup of M(G).

Theorem (S) $\phi: \Omega/\Omega_{\rho} \to \Gamma = \Gamma_{\Omega}: (\alpha, t)\Omega_{\rho} \mapsto \alpha \delta_t * \rho m_K$ is a topological group isomorphism.

Corollary (S)

Letting

$$H = \operatorname{support}(\Gamma) = \bigcup \{\operatorname{support}(\mu) : \mu \in \Gamma\},\$$

$$\Gamma_{\mathbb{T}\times H} = \{\alpha\delta_t * \rho m_K : (\alpha, t) \in \mathbb{T} \times H\} \cong \mathbb{T} \times H/\Omega_{\rho}$$

is a locally compact contractive subgroup of M(G).

First factorization theorem

Let

$$\varphi: M(F) \to M(G)$$

be a $so-w^*$ conts contractive homomorphism. Let

$$\Gamma = \{ \varphi(\delta_x) : x \in F \} \le M(G)_{\|\cdot\| \le 1}.$$

Letting $H = \text{support}(\Gamma)$, get a topological isomorphism

$$\phi: \mathbb{T} \times H/\Omega_{\rho} \to \Gamma_{\mathbb{T} \times H} \supseteq \Gamma.$$

First factorization theorem

Let $\varphi: M(F) \to M(G)$ be a $so-w^*$ conts contractive homom.

Let
$$\Gamma = \{ \varphi(\delta_x) : x \in F \} \le M(G)_{\|\cdot\| \le 1}.$$

Letting $H = \text{support}(\Gamma)$, get a topological isomorphism

$$\phi: \mathbb{T} \times H/\Omega_{\rho} \to \Gamma_{\mathbb{T} \times H} \supseteq \Gamma \subset M(H).$$

Note

$$\phi: \mathbb{T} \times H/\Omega_{\rho} \to \Gamma_{\mathbb{T} \times H} \subseteq \mathbb{M}_{\phi}$$

where $\iota_{\phi} = \varphi(\delta_{e_F}) = \rho m_K \in M(H)$ and

$$\mathbb{M}_{\phi} = \{ \mu \in M(H) : \mu^* * \mu = \mu * \mu^* = \iota_{\phi}, \ \mu * \iota_{\phi} = \mu \}.$$

This gives a $w^* - w^*$ continuous homomorphism

$$\kappa_{\phi}^*: M(\mathbb{T} \times H/\Omega_{\rho}) \to M(H) \hookrightarrow M(G).$$

First factorization theorem

Let $\varphi: M(F) \to M(G)$ be a $so-w^*$ contractive homom, $\Gamma = \{\varphi(\delta_x) : x \in F\} \leq M(G)_{\|\cdot\| \leq 1}$, $H = \operatorname{support}(\Gamma)$. Get

$$\phi: \mathbb{T} \times H/\Omega_{\rho} \to \Gamma_{\mathbb{T} \times H} \supseteq \Gamma, \quad \kappa_{\phi}^*: M(\mathbb{T} \times H/\Omega_{\rho}) \to M(H) \hookrightarrow M(G).$$

Define a continuous homomorphism

$$\theta: F \to \mathbb{T} \times H/\Omega_{\rho}$$
 by $\theta(x) = \phi^{-1}(\varphi(\delta_x)).$

$$F \xrightarrow{x \mapsto \varphi(\delta_x)} \Gamma_{\mathbb{T} \times H} \xrightarrow{\phi^{-1}} \mathbb{T} \times H/\Omega_{\rho}$$

This gives $so - w^*$ continuous homomorphism

$$j_{\theta}^*: M(F) \to M(\mathbb{T} \times H/\Omega_{\rho}).$$

First factorization theorem

Let $\varphi: M(F) \to M(G)$ be a $so-w^*$ contractive homom.

$$\phi: \mathbb{T} \times H/\Omega_{\rho} \to \Gamma_{\mathbb{T} \times H}, \quad \kappa_{\phi}^{*}: M(\mathbb{T} \times H/\Omega_{\rho}) \to M(H): \delta_{z} \mapsto \phi(z)$$

$$\theta: F \to \mathbb{T} \times H/\Omega_{\rho}: x \mapsto \phi^{-1}(\varphi(\delta_{x}))$$

$$j_{\theta}^{*}: M(F) \to M(\mathbb{T} \times H/\Omega_{\rho}): \delta_{x} \mapsto \delta_{\theta(x)}.$$

Thm (S)
$$\varphi = \kappa_{\phi}^* \circ j_{\theta}^*$$
 $M(F) \xrightarrow{\varphi} M(H) \hookrightarrow M(G)$ $j_{\theta}^* \downarrow \qquad M(\mathbb{T} \times H/\Omega_{\varrho})$

Final Step:
$$\kappa_{\phi}^* = j_{\theta_H}^* \circ A_{\alpha_{\mathbb{T}}} \circ S_{\Omega_{\rho}}^*$$

We have:
$$M(F) \xrightarrow{\varphi} M(H) \hookrightarrow M(G)$$

$$j_{\theta}^{*} \downarrow \qquad \qquad \kappa_{\phi}^{*}$$

$$M(\mathbb{T} \times H/\Omega_{\rho})$$

We need:

$$M(F) \xrightarrow{\varphi} M(H) \hookrightarrow M(G)$$

$$j_{\theta}^{*} \downarrow \qquad \qquad \uparrow j_{\theta_{H}}^{*}$$

$$M(\mathbb{T} \times H/\Omega_{\rho}) \xrightarrow{S_{\Omega_{\rho}}^{*}} M(\mathbb{T} \times H) \xrightarrow{A_{\alpha_{\mathbb{T}}}} M(\mathbb{T} \times H)$$

The proof can be completed by showing that

$$\kappa_{\phi}^* = j_{\theta_H}^* \circ A_{\alpha_{\mathbb{T}}} \circ S_{\Omega_{\rho}}^*$$

The Main Theorem

Theorem(S) Let $\varphi: L^1(F) \to M(G)$ be a contractive homomorphism. Then there exists

- a closed subgroup H of G;
- a compact normal subgroup N of $\mathbb{T} \times H$; and
- a continuous homomorphism $\theta: F \to \mathbb{T} \times H/N$

such that
$$\varphi = j_{\theta_H}^* \circ A_{\alpha_T} \circ S_N^* \circ j_{\theta}^*$$
.

$$L^{1}(F) \xrightarrow{\varphi} M(H) \hookrightarrow M(G)$$

$$\downarrow_{\theta}^{*} \downarrow \qquad \uparrow_{\theta_{H}}^{*}$$

$$M(\mathbb{T} \times H/N) \xrightarrow{S_{N}^{*}} M(\mathbb{T} \times H) \xrightarrow{A_{\alpha_{\mathbb{T}}}} M(\mathbb{T} \times H)$$

The converse holds.

Theorem(S) Let $\varphi: M(F) \to M(G)$ be a w^* continuous contractive homomorphism. Then there exists

- a closed subgroup H of G;
- a compact normal subgroup N of $\mathbb{T} \times H$; and
- a continuous proper homomorphism $\theta: F \to \mathbb{T} \times H/N$ such that

$$\varphi = j_{\theta_H}^* \circ A_{\alpha_{\mathbb{T}}} \circ S_N^* \circ j_{\theta}^*.$$

$$M(F) \xrightarrow{\varphi} M(H) \hookrightarrow M(G)$$

$$j_{\theta_V}^* \downarrow \qquad \qquad \uparrow j_{\theta_H}^*$$

$$M(\mathbb{T} \times H/N) \xrightarrow{S_N^*} M(\mathbb{T} \times H) \xrightarrow{A_{\alpha_{\mathbb{T}}}} M(\mathbb{T} \times H)$$

The converse holds.

Corollary (S) Let $\varphi : LUC(F)^* \to LUC(G)^*$. TFAE:

- φ is a $w^* w^*$ continuous homomorphism such that
 - φ is contractive on Δ_F ; and
 - $\varphi(\mu_0) \notin C_0(G)^{\perp}$ for some $\mu_0 \in M(F)$.
- $m{\varphi}$ has a canonical factorization

$$\varphi = j_{\theta_H}^* \circ A_{\alpha_{\mathbb{T}}} \circ S_N^* \circ j_{\theta}^*.$$

Recall that

$$LUC(G)^* = M(G) \oplus_1 C_0(G)^{\perp}$$

Corollary (S) Let $\varphi : LUC(F)^* \to LUC(G)^*$. TFAE:

- φ is a $w^* w^*$ continuous homomorphism such that
 - φ is contractive on Δ_F ; and
 - $\varphi(\mu_0) \notin C_0(G)^{\perp}$ for some $\mu_0 \in M(F)$.
- $m{\varphi}$ has a canonical factorization

$$\varphi = j_{\theta_H}^* \circ A_{\alpha_{\mathbb{T}}} \circ S_N^* \circ j_{\theta}^*.$$

Recall that

$$LUC(G)^* = M(G) \oplus_1 C_0(G)^{\perp}$$

We may replace LUC by WAP or E.

Corollary (S) Let

$$\varphi: LUC(F)^* \to LUC(G)^* \text{ (or } \varphi: M(F) \to M(G)).$$

TFAE:

- φ is a w^*-w^* (resp. $so-w^*$) conts, contractive homom such that $\varphi(\delta_{e_F})=\delta_{e_G}$
- there is a conts homom $\theta: F \to G$ and $\alpha \in \widehat{F}^1$ such that

$$\varphi = j_{\theta}^* \circ A_{\alpha}.$$

Corollary (S) Let

$$\varphi: LUC(F)^* \to LUC(G)^* \text{ (or } \varphi: M(F) \to M(G)).$$

TFAE:

- φ is a w^*-w^* (resp. $so-w^*$) conts, contractive homom such that $\varphi(\delta_{e_F})=\delta_{e_G}$
- there is a conts homom $\theta: F \to G$ and $\alpha \in \widehat{F}^1$ such that

$$\varphi = j_{\theta}^* \circ A_{\alpha}.$$

We may replace LUC by WAP or E.

Corollary (S) TFAE for

$$\varphi: LUC(F)^* \to LUC(G)^*:$$

- φ is a $w^* w^*$ continuous isomorphism that is contractive on Δ_F .
- there is a topological isomorphism $\theta: F \to G$ and $\alpha \in \widehat{F}^1$ such that

$$\varphi = j_{\theta}^* \circ A_{\alpha}$$

Hence, φ is an isometric *-isomorphism mapping

- M(F) as an isometric *-isomorphism onto M(G);
- $L^1(F)$ as an isometric *-isomorphism onto $L^1(G)$.

Corollary (S) TFAE for

$$\varphi: LUC(F)^* \to LUC(G)^*:$$

- φ is a $w^* w^*$ continuous isomorphism that is contractive on Δ_F .
- there is a topological isomorphism $\theta: F \to G$ and $\alpha \in \widehat{F}^1$ such that

$$\varphi = j_{\theta}^* \circ A_{\alpha}$$

Hence, φ is an isometric *-isomorphism mapping

- M(F) as an isometric *-isomorphism onto M(G);
- $L^1(F)$ as an isometric *-isomorphism onto $L^1(G)$.

We may replace LUC by WAP or E.

Corollary (S) TFAE for

$$\varphi: L^1(F) \to L^1(G):$$

- φ is a contractive epimorphism;
- there is a continuous open epimorphism $\theta: F \to G$ and $\alpha \in \widehat{F}^1$ such that

$$\varphi = j_{\theta}^* \circ A_{\alpha}$$