Some weighted groups algebras are operator algebras

Ebrahim Samei
University of Saskatchewan

(Joint work in progress with Hun Hee Lee and Nico Spronk)

August 8, 2011

Definition 1 Let A be a unital commutative Banach algebra. Then:

- (i) A is a Q-algebra if it is isomorphic to a quotient of a uniform algebra;
- (ii) A satisfies multi-variable (δ, L) -von Neumann inequality provided that for every $n \in N$, every set of n elements $\{a_1, \ldots, a_n\} \subset A$ with $||a_i|| \leq \delta$ $(i = 1, \ldots, n)$, and every polynomial p in n variables, we have

$$||p(a_1,\ldots,a_n)|| \le L||p||_{\infty},$$

where

$$||p||_{\infty} = \sup\{|p(z_1,\ldots,z_n):|z_i|\leq 1, 1\leq i\leq n\}.$$

Theorem 2 (Varapolous-Craw)

Let A be a unital commutative Banach algebra. Then the following statements are equivalent:

- (i) A is a Q-algebra;
- (ii) A satisfies multi-variable (δ, L) -von Neumann inequality for some positive δ and M;
- (iii) the multiplication map

$$m: A \check{\otimes} A \to A, \quad a \times b \mapsto ab$$

is bounded. Here $\check{\otimes}$ is the injective tensor product.

Let A be an operator space which is also an algebra. We say that A is **completely isomorphic to an operator algebra** if there is an operator algebra $B \subseteq B(H)$, and a completely bounded invertible homomorphism $\rho: A \to B$ such that ρ^{-1} is completely bounded.

Theorem 3 (D. Blecher)

Let $m:A\otimes A\to A$ denote the multiplication on A. Then A is completely isomorphic to an operator algebra if and only if m extends to a completely bounded map $m:A\otimes^h A\to A$. **Note:** Consider $l^1(X)$ with MAX operator space structure. Then

$$l^1(X) \otimes^h l^1(X) \cong l^1(X) \check{\otimes} l^1(X)$$

as Banach spaces.

Examples of *Q*-algebras:

- (i) (Varapolous/Cole) l^p with pointwise product for $1 \le p \le \infty$.
- (ii) (Le Merdy/Pérez-Garcia) S^p with Schur product if $1 \le p \le 4$.
- (iii) (Varapolous) $l^1(\mathbb{Z}, (1+|n|)^{\alpha})$ with convolution product if and only if $\alpha > 1/2$.

G: a countable, discrete group. $l^1(G)$: The group algebra of G;

$$f * g(x) = \sum_{t \in G} f(t)g(t^{-1}x).$$

A **weight** on G is a function $\omega : G \rightarrow (0, \infty)$ such that

$$\omega(st) \leqslant \omega(s)\omega(t) \quad (s, t \in G).$$

Examples: If $0 \le \alpha \le 1$, $\beta \ge 0$, C > 0

$$n \mapsto e^{C|n|^{\alpha}}$$
, $n \mapsto (1+|n|)^{\beta}$.

The weighted group algebra $l^1(G,\omega)$ is all functions $f:G\to\mathbb{C}$ such that

$$||f||_{\omega} = \sum_{t \in G} |f(t)|\omega(t)dt < \infty.$$

Groups with polynomial growth:

A group G has **polynomial growth** if for every finite subset F of G such that $e \in F$, there exist a polynomial f on $\mathbb R$ such that

$$|F^n| \le f(n) \quad (n \in \mathbb{N}).$$

Here |S| is the cardinality of any $S\subseteq G$ and

$$F^n = \{u_1 \cdots u_n : u_i \in F, i = 1, \dots, n\}.$$

Examples: finite groups, groups with finite conjugacy class, nilpotent groups.

M. Gromov: Every finitely generated group with polynomial growth is virtually nilpotent i.e. it has a nilpotent subgroup of finite index. Moreover, there is a finite symmetric subset F of G including the identity e, a polynomial f on $\mathbb R$ and a constant $0 < \lambda \le 1$ such that

$$\lambda f(n) \leq |F^n| \leq f(n)$$
 for all $n \in \mathbb{N}$.

The least degree of any polynomial satisfying the above relation is called **the** order of growth of G and it is denoted by d(G).

Bass-Guivarch formula: Let G be a finitely generated nilpotent group with lower central series

$$G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_m = \{e\}.$$

Then the order of polynomial growth of G is

$$d(G) = \sum_{k=1}^{m-1} k \operatorname{rank}(G_k/G_{k+1}),$$

where rank denotes the rank of an abelian group, i.e. the largest number of independent and torsion-free elements of the abelian group.

Weights on finitely generated groups with polynomial growth:

We can define the **length function** τ_F :

$$G \to [0, \infty)$$
 by $\tau(e) = 0$ and

$$\tau(x) = \inf\{n \in \mathbb{N} : x \in F^n\} \text{ for } x \neq 0.$$

au is a subadditive function on G, i.e.

$$\tau(xy) \le \tau(x) + \tau(y) \qquad (x, y \in G).$$

and for every $x \in G$, $\tau(x) = \tau(x^{-1})$.

Let $\beta \geq 0$. We define the **polynomial** weight ω_{β} on G by

$$\omega_{\beta}(x) = (1 + \tau(x))^{\beta} \quad (x \in G).$$

Theorem 4 $l^1(G, \omega_\beta)$ is an operator algebra if one of the following condition holds:

(i)
$$\lambda = 1$$
 and $2\beta > d$;

(ii)
$$0 < \lambda < 1$$
 and $2\beta > d + 1$.

In addition, if $m: l^1(G, \omega_\beta) \otimes^h l^1(G, \omega_\beta) \to l^1(G, \omega_\beta)$ is the multiplication map on Haagerup tensor product, then

$$||m||_{cb} \le \min\{2, 2^{\beta}\} \left[1 + \sum_{n=1}^{\infty} \frac{f(n) - \lambda f(n-1)}{(1+n)^{2\beta}}\right]$$

For a weight ω on G, we define the center of $l^1(G,\omega)$ to be

$$Zl^{1}(G,\omega) := \{ f \in l^{1}(G,\omega) : f(x^{-1}yx) = f(x) \}$$

for every $x, y \in G$.

Theorem 5 $Zl^1(G, \omega_\beta)$ is a Q-algebra if one of the following condition holds:

- (i) $\lambda = 1$ and $2\beta > d$;
- (ii) $0 < \lambda < 1$ and $2\beta > d + 1$.

In either case, $Zl^1(G, \omega_\beta)$ satisfies the multi-variable von Neumann inequality.

Let $0 \le \alpha \le 1$ and C > 0. We define the **exponential weight** σ_{α} on G by

$$\sigma_{\alpha}(x) = e^{C\tau(x)^{\alpha}} \quad (x \in G).$$

Theorem 6 Let $0 \le \alpha \le 1$ and C > 0.

Then $l^1(G, \sigma_{\alpha})$ is an operator algebra if and only if $0 < \alpha < 1$.

If $m: l^1(G, \sigma_\alpha) \otimes^h l^1(G, \sigma_\alpha) \to l^1(G, \sigma_\alpha)$ is the multiplication map on Haagerup tensor product, and

$$\beta \geq \max \left\{1, \frac{6}{C\alpha(1-\alpha)}, \frac{d+(1-\delta_1(\lambda))}{2}\right\},$$

then

$$||m||_{cb} \le M2^{\beta} \left[1 + \sum_{n=1}^{\infty} \frac{f(n) - \lambda f(n-1)}{(1+n)^{2\beta}} \right]^{1/2}.$$

The d-dimensional integers \mathbb{Z}^d :

The order of growth of \mathbb{Z}^d is d. Let

$$F = \{(x_1, \dots, x_d) \mid x_i \in \{-1, 0, 1\}\}.$$

Then F is a finite, symmetric generating set for \mathbb{Z}^d which includes the identity of \mathbb{Z}^d . Also, for every $n \in \mathbb{N}$,

$$F^n = \{(x_1, \dots, x_d) \mid x_i \in \{-n, \dots, 0, \dots, n\}\}.$$

In particular,

$$|F^n| = (2n+1)^d$$
 $(n = 0, 1, 2, ...).$

If we let ω_{β} be the polynomial weight on \mathbb{Z}^d , then

$$\omega_{\beta}(x_1,\ldots,x_d) = (1+\max\{|x_1|,\ldots,|x_d|)^d.$$

Then $l^1(\mathbb{Z}^d,\omega_\beta)$ is a Q-algebra if

$$2\beta > d$$
.

If $m: l^1(\mathbb{Z}^d, \omega_\beta) \otimes^h l^1(\mathbb{Z}^d, \omega_\beta) \to l^1(\mathbb{Z}^d, \omega_\beta)$ is the multiplication map, then

$$||m||_{cb} \leq \min\{2,2^{\beta}\} \left[1 + \frac{d2^d}{2\beta - d}\right]^{1/2}.$$

Let $0 < \alpha < 1$, C > 0, and

$$\sigma_{\alpha}(x_1, \dots, x_d) = e^{C \max\{|x_1|, \dots, |x_d|\}^d}.$$

Then $l^1(\mathbb{Z}^d, \sigma_{\alpha})$ is a Q-algebra.

If $m: l^1(\mathbb{Z}^d, \sigma_\alpha) \otimes^h l^1(\mathbb{Z}^d, \sigma_\alpha) \to l^1(\mathbb{Z}^d, \sigma_\alpha)$ is the multiplication map and

$$\beta \geq \max\left\{1, d, \frac{6}{C\alpha(1-\alpha)}\right\},$$

then

$$||m||_{cb} \le M2^{\beta} \left[1 + \frac{d2^d}{2\beta - d} \right]^{1/2}.$$

For example, if

$$d=1$$
 and $C=rac{6}{lpha(1-lpha)},$

then $||m||_{cb} \leq 6$.