Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak

Complete compactness in abstract harmonic analysis

Volker Runde

University of Alberta

Waterloo, August 9, 2011

(Weakly) almost periodic functions...

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weal compactness?

Definition

Let G be a locally compact group. Then $f \in \mathcal{C}(G)$ is called almost periodic if its left orbit, i.e., the set of all left translates of f, is relatively compact in $\mathcal{C}(G)$ and is called weakly almost periodic if its left orbit is relatively weakly compact in in $\mathcal{C}(G)$.

Not too hard...

$$\mathcal{AP}(G) := \{ f \in \mathcal{C}(G) : f \text{ is almost periodic} \}$$

and

$$\mathcal{WAP}(G):=\{f\in\mathcal{C}(G): f \text{ is weakly almost periodic}\}$$
 are C^* -subalgebras of $\mathcal{C}(G)$.

...and functionals

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak

Definition

Let A be a Banach algebra. Then $\phi \in A^*$ is called almost periodic if the map

$$A \to A^*, \quad a \mapsto a \cdot \phi$$

is compact and is called weakly almost periodic if it is weakly compact.

Notation

$$\mathcal{AP}(A) := \{ \phi \in A^* : \phi \text{ is almost periodic} \}$$

$$WAP(A) := \{ \phi \in A^* : \phi \text{ is weakly almost periodic} \}$$

The $L^1(G)$ -case...

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Theorem (partly A. Ülger, 1986)

$$\mathcal{AP}(L^1(G)) = \mathcal{AP}(G) \text{ and } \mathcal{WAP}(L^1(G)) = \mathcal{WAP}(G).$$

Consequence

 $\mathcal{AP}(L^1(G))$ and $\mathcal{WAP}(L^1(G))$ are C^* -subalgebras of $\mathcal{C}(G)$ and thus of $L^{\infty}(G)$.

... vs. the A(G)-case

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete wear compactness?

Definition (C. F. Dunkl & D. E. Ramirez, 1972)

$$\mathcal{AP}(\hat{G}) := \mathcal{AP}(A(G))$$
 and $\mathcal{WAP}(\hat{G}) := \mathcal{WAP}(A(G))$.

Question

Are $\mathcal{AP}(\hat{G})$ and $\mathcal{WAP}(\hat{G})$ C^* -subalgebras of VN(G)?

Positive answers

- for abelian G: by Pontryagin duality;
- for discrete, amenable G:

$$\mathcal{AP}(\hat{G}) = \mathcal{WAP}(\hat{G}) = C_r^*(G)$$

(E. Granirer, 1977).

Hopf-von Neumann algebras, I

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Definition

A Hopf–von Neumann algebra is a pair (M,Γ) , where M is a von Neumann algebra and $\Gamma\colon M\to M\bar{\otimes} M$ is a co-multiplication, i.e., a normal, faithful, unital *-homomorphism such that

$$(\mathsf{id} \otimes \Gamma) \circ \Gamma = (\Gamma \otimes \mathsf{id}) \circ \Gamma.$$

Hopf-von Neumann algebras, II

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Examples

 $M = L^{\infty}(G) \text{ and } \Gamma_G \colon L^{\infty}(G) \to L^{\infty}(G \times G) \text{ given by}$ $(\Gamma_G \phi)(x,y) := \phi(xy) \qquad (x,y \in G, \ \phi \in L^{\infty}(G));$

$$M = VN(G)$$
 and

$$\hat{\Gamma}_G \colon VN(G) \to VN(G \times G), \quad \lambda(x) \mapsto \lambda(x) \otimes \lambda(x).$$

Hopf-von Neumann algebras, III

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Remember...

If (M,Γ) is a Hopf–von Neumann algebra, then M_* becomes a Banach algebra via

$$\langle f * g, x \rangle := \langle f \otimes g, \Gamma x \rangle$$
 $(f, g \in M_*, x \in M).$

Examples

- $(L^{\infty}(G), \Gamma_G)$: $L^1(G)$ with the convolution product;
- $(VN(G), \hat{\Gamma}_G)$: A(G) with the pointwise product.

Hopf-von Neumann algebras, IV

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weal compactness?

Question

If (M, Γ) is a Hopf–von Neumann algebra, are $\mathcal{AP}(M_*)$ and $\mathcal{WAP}(M_*)$ C^* -subalgebras of M?

Theorem (M. Daws, 2010)

 $\mathcal{AP}(M_*)$ and $\mathcal{WAP}(M_*)$ are C^* -subalgebras of M if M is abelian.

Fundamental problem

For any (M,Γ) , M_* is a completely contractive Banach algebra, but $\mathcal{AP}(M_*)$ and $\mathcal{WAP}(M_*)$ completely ignore the operator space structure.

A new look at compactness, I

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak

Compactnes implies . . .

Let E and F be Banach spaces, and let $T \in \mathcal{B}(E,F)$ be compact. Let $\epsilon > 0$. Then there are $y_1, \ldots, y_n \in F$ such that

$$T(\mathsf{Ball}(E)) \subset \bigcup_{j=1}^n y_j + \mathsf{ball}_\epsilon(F).$$

Set $Y_{\epsilon} := \operatorname{span}\{y_1, \dots, y_n\}$ and let $Q_{Y_{\epsilon}} \colon F \to F/Y_{\epsilon}$ be the quotient map. Then dim $Y_{\epsilon} < \infty$ and $\|Q_{Y_{\epsilon}}T\| < \epsilon$.

A new look at compactness, II

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

...and is implied

Let $T \in \mathcal{B}(E,F)$ be such that, for every $\epsilon > 0$, there is a subspace Y_{ϵ} of F with dim $Y_{\epsilon} < \infty$ and $\|Q_{Y_{\epsilon}}T\| < \epsilon$. Let $\epsilon > 0$, and fix $Y_{\frac{\epsilon}{2}}$. Set

$$\mathcal{K}:=\left\{y\in Y_{\frac{\epsilon}{3}}: \text{there is } x\in \mathsf{Ball}(E) \text{ with } \|\mathit{T}x-y\|<\frac{\epsilon}{3}
ight\}.$$

Then K is bounded and thus totally bounded (as dim $Y_{\frac{\epsilon}{3}} < \infty$). Let $y_1, \ldots, y_n \in K$ be such that

$$K \subset \bigcup_{j=1}^n y_j + \mathsf{ball}_{\frac{\epsilon}{3}}(F).$$

A new look at compactness, III

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

...and is implied (continued)

Pick $x_1, \ldots, x_n \in Ball(E)$ such that

$$||Tx_j-y_j||<\frac{\epsilon}{3}$$
 $(j=1,\ldots,n).$

Let $x \in \mathsf{Ball}(E)$. As $\|Q_{Y_{\frac{\epsilon}{3}}}T\| < \frac{\epsilon}{3}$, there is $y \in Y_{\frac{\epsilon}{3}}$ with $\|Tx - y\| < \frac{\epsilon}{3}$, i.e., $y \in K$. Choose $k \in \{1, \dots, n\}$ such that $\|y - y_k\| < \frac{\epsilon}{3}$. Then

$$||Tx - Tx_k|| \le ||Tx - y|| + ||y - y_k|| + ||y_k - Tx_k|| < \epsilon.$$

Hence,

$$T(\mathsf{Ball}(E)) \subset \bigcup_{i=1}^n Tx_i + \mathsf{ball}_{\epsilon}(F).$$

A new look at compactness, IV

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Proposition (H. Saar, 1982; H. E. Lacey, 1963)

The following are equivalent for $T \in \mathcal{B}(E, F)$:

- T is compact;
- 2 for every $\epsilon > 0$, there is a subspace Y_{ϵ} of F with dim $Y_{\epsilon} < \infty$ and $\|Q_{Y_{\epsilon}}T\| < \epsilon$, where $Q_{Y_{\epsilon}}: F \to F/Y_{\epsilon}$ is the quotient map;
- 3 for every $\epsilon > 0$, there is a closed subspace X_{ϵ} of E with dim $E/X_{\epsilon} < \infty$ such that $||T|_{X_{\epsilon}}|| < \epsilon$.

Completely compact maps, I

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Definition (H. Saar, 1982)

Let E and F be operator spaces. Then $T \in \mathcal{CB}(E,F)$ is called completely compact if, for every $\epsilon > 0$, there is a subspace Y_{ϵ} of F with dim $Y_{\epsilon} < \infty$ and $\|Q_{Y_{\epsilon}}T\|_{\mathsf{cb}} < \epsilon$.

Notation

 $\mathcal{CK}(E,F) := \{ T \in \mathcal{CB}(E,F) : T \text{ is completely compact} \}$

Completely compact maps, II

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Properties

- every finite rank operator is completely compact;

$$\mathcal{CK}(\mathcal{B}(\ell^2),\mathcal{K}(\ell^2)) \subset \ \c\subseteq \mathcal{CB}(\mathcal{B}(\ell^2),\mathcal{K}(\ell^2)) \cap \mathcal{K}(\mathcal{B}(\ell^2),\mathcal{K}(\ell^2))$$

(H. Saar, 1982);

- **3** CK(E, F) is cb-norm closed in CB(E, F);
- 4 if $S \in \mathcal{CK}(E, F)$, $T \in \mathcal{CB}(X, E)$, and $R \in \mathcal{CB}(F, Y)$, then $ST \in \mathcal{CK}(X, F)$ and $RS \in \mathcal{CK}(E, Y)$.

Failure of Schauder's theorem, I

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Definition (T. Oikhberg, 2001)

 $T \in \mathcal{CB}(E,F)$ is called Gelfand completely compact if, for every $\epsilon > 0$, there is a closed subspace X_{ϵ} of F with $\dim E/X_{\epsilon} < \infty$ and $\|T|_{X_{\epsilon}}\|_{cb} < \epsilon$.

Obvious...

 $T \in \mathcal{CK}(E,F) \iff T^*$ is Gelfand completely compact

Failure of Schauder's theorem, II

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete wear

Recall...

F is called **injective** if, for every E, for every subspace X of E, and for every $T \in \mathcal{CB}(X,F)$, there is $\tilde{T} \in \mathcal{CB}(E,F)$ with $\tilde{T}|_{X} = T$ and $\|\tilde{T}\|_{cb} = \|T\|_{cb}$.

Example

 $\mathcal{B}(H)$ is injective.

Proposition

Let F be injective. Then every Gelfand completely compact map in $\mathcal{CB}(E,F)$ is a cb-norm limit of finite rank operators.

Failure of Schauder's theorem, III

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Example (T. Oikhberg, 2001)

 $\mathcal{B}(\ell^2)$ lacks the approximation property (A. Szankowski, 1981), and thus lacks the strong operator space approximation property.

Therefore, there are

- \blacksquare an operator space E
- and $T \in \mathcal{CK}(E, \mathcal{B}(\ell^2))$ such that T is not a cb-norm limit of finite rank operators

(C. Webster, 1998).

As $\mathcal{B}(\ell^2)$ is injective, \mathcal{T} cannot be Gelfand completely compact.

On the positive side. . .

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Proposition

Suppose that E^* and F^* are injective. Then the following are equivalent for $T \in \mathcal{CB}(E, F^*)$:

- $T \in \mathcal{CK}(E, F^*);$
- **2** T is Gelfand completely compact;
- **3** T is a cb-norm limit of finite rank operators.

Completely almost periodic functionals, I

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Definition

Let A be a completely contractive Banach algebra. Then $\phi \in A^*$ is called completely almost periodic if

$$(*)$$

$$A \to A^*$$
, $a \mapsto a \cdot \phi$

and

$$A \to A^*, \quad a \mapsto \phi \cdot a$$

are completely compact.

Notation

$$\mathcal{CAP}(\mathit{A}) := \{\phi \in \mathit{A}^* : \phi \text{ is completely almost periodic}\}$$

Completely almost periodic functionals, II

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak

Remarks

- We have to require both (*) and (**) to be completely compact due to the failure of Schauder's theorem. (At least if we want a symmetric definition.)
- As (**) is the adjoint of (*) restricted to A (and vice versa),

$$\mathcal{CAP}(A) = \{ \phi \in A^* : (*), (**) \text{ are Gelfand completely compact} \}.$$

Injective Hopf-von Neumann algebras

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Theorem (V. Runde, 2010)

Let (M,Γ) be a Hopf–von Neumann algebra with M injective. Then

$$CAP(M_*) = \{x \in M : \Gamma x \in M \check{\otimes} M\}.$$

In particular, $CAP(M_*)$ is a C^* -subalgebra of M.

Proof.

$$M \bar{\otimes} M \cong (M_* \hat{\otimes} M_*)^* \cong \mathcal{CB}(M_*, M)$$

with

 $M \check{\otimes} M \cong \text{closure of finite rank maps in } \mathcal{CB}(M_*, M).$

The Fourier algebra

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functional:

Complete compactness

Completely almost periodic functionals

What about complete wea compactness?

Recall...

VN(G) is injective if G is

- amenable or
- connected.

Notation

$$CAP(\hat{G}) := CAP(A(G)).$$

Corollary

Let G be amenable or connected. Then $\mathcal{CAP}(\hat{G})$ is a C^* -subalgebra of VN(G).

When is a completely bounded map weakly compact?

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Theorem (W. J. Davis, et al., 1974)

The following are equivalent for $T \in \mathcal{B}(E, F)$:

- 1 T is weakly compact;
- 2 T factors through a reflexive Banach space.

Theorem (H. Pfitzner & G. Schlüchtermann, 1997; M. Daws, 2007)

The following are equivalent for $T \in \mathcal{CB}(E, F)$:

- 1 T is weakly compact;
- **2** T factors through a reflexive operator space.

A new look at $WAP(M_*)$, I

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

A different approach

For $\mathbf{x} \in N \bar{\otimes} M$, define $\mathcal{T}(\mathbf{x}) \in \mathcal{CB}(N_*, M)$ as

$$\mathcal{T}(\mathbf{x}) \colon \mathcal{N}_* \to \mathcal{M}, \quad f \mapsto (f \otimes \mathsf{id})(\mathbf{x}).$$

Set

$$\mathcal{W}(\textit{N}\bar{\otimes}\textit{M}) = \{\textbf{x} \in \textit{N}\bar{\otimes}\textit{M} : \mathcal{T}(\textbf{x}) \text{ is weakly compact}\}.$$

If (M,Γ) is a Hopf-von Neumann algebra, then

$$WAP(M_*) = \{x \in M : \Gamma x \in W(M \bar{\otimes} M)\}.$$

A new look at $WAP(M_*)$, II

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Question

Is $\mathcal{W}(N \bar{\otimes} M)$ a C^* -subalgebra of $N \bar{\otimes} M$?

Question

Let $\mathbf{x}, \mathbf{y} \in \mathcal{W}(N \bar{\otimes} M)$. Can we give meaningful conditions making sure that $\mathbf{x}\mathbf{y} \in \mathcal{W}(N \bar{\otimes} M)$?

A general theorem

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Theorem (V. Runde, 2011)

Suppose that N and M are injective, and let $\mathbf{x}, \mathbf{y} \in N \bar{\otimes} M$ be such that:

- 1 $\mathcal{T}(\mathbf{x})$ factors through an operator space E;
- **2** $\mathcal{T}(\mathbf{y})$ factors through an operator space F;
- **3** $E \otimes^h F$ is reflexive.

Then $\mathbf{xy} \in \mathcal{W}(N \bar{\otimes} M)$.

Reflexivity of $E \otimes^h F$

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Question

Is $E \otimes^h F$ always reflexive for reflexive E and F?

Partial answers...

- **no**: $E = H_c$ and $F = H_r$.
- yes if...
 - dim $E < \infty$ or dim $F < \infty$;
 - $E = F = H_c$, $E = F = H_r$, or E = F = OH;
 - $E = \min E$ and $F = \max E$ because $E \otimes^h F \cong E \otimes_{d_2} F$.

One final look at $\mathcal{WAP}(M_*)$

Complete compactness in abstract harmonic analysis

Volker Runde

(Weakly) almost periodic functionals

Complete compactness

Completely almost periodic functionals

What about complete weak compactness?

Consequences

Let (M, Γ) be a Hopf-von Neumann algebra with M injective, and let $x, y \in M$. Then:

- I if $x, y \in WAP(M_*)$, and if M is subhomogeneous, then $xy \in WAP(M_*)$;
- 2 if $x \in \mathcal{WAP}(M_*)$ and $y \in \mathcal{CAP}(M_*)$, then $xy \in \mathcal{WAP}(M_*)$;
- if $\mathcal{T}(\Gamma x)$ and $\mathcal{T}(\Gamma y)$ each factor through minimal, reflexive operator spaces, and if (M,Γ) is co-commutative, then $xy \in \mathcal{WAP}(M_*)$.