Poisson Boundaries over Locally Compact Quantum Groups

Zhong-Jin Ruan
University of Illinois at Urbana-Champaign

Banach Algebras 2011 University of Waterloo August 3-10, 2011

Harmonic Functions on Groups

Let G be a locally compact group and μ a probability measure on G.

We can define a map Φ_{μ} on $L_{\infty}(G)$ given by

$$\Phi_{\mu}(h)(s) = \int_{G} h(st)d\mu(t)$$

for all $h \in L_{\infty}(G)$.

It is clear that Φ_{μ} is a unital (completely) positive, and weak* continuous map on $L_{\infty}(G)$ such that

$$\Phi_{\mu} = m_{\mu}^*$$

is the adjoint of the right multiplication map $m_{\mu}(f) = f \star \mu$ for $f \in L_1(G)$.

In this case, we say that Φ_{μ} is a Markov operator on $L_{\infty}(G)$. A function $h \in L_{\infty}(G)$ is μ -harmonic (or Φ_{μ} -harmonic) if

$$\Phi_{\mu}(h) = h.$$

Motivation

Here is a reason why we use the terminology μ -harmonic functions in such a definition.

Suppode that G is a Lie group and Δ is the Laplacian operator on G. A function $f \in C^{\infty}(G)$ is harmonic if

$$\Delta(f) = 0.$$

Then we can consider the semigroup of (completely) positive maps

$$P_t = e^{t\Delta}$$

for all $t \ge 0$. Then h is harmonic if and only if $P_t(h) = h$ for all $t \ge 0$.

Poisson Boundary

We let

$$\mathcal{H}_{\mu} = \{ h \in L_{\infty}(G) : \Phi_{\mu}(h) = h \}$$

be the space of all μ -harmonic functions on G, which is a unital weak* closed operator system in $L_{\infty}(G)$.

It is important to note that there is a conditional expactation

$$\mathcal{E}: L_{\infty}(G) \to \mathcal{H}_{\mu} \subseteq L_{\infty}(G)$$

from $L_{\infty}(G)$ onto \mathcal{H}_{μ} . For instance, we can obtain a such \mathcal{E} by consider the Banach limit

$$\langle \mathcal{E}(h), f \rangle = \lim_{B} \langle \Phi_{\mu}^{n}(h), f \rangle = \lim_{B} \langle h, f \star \mu^{n} \rangle$$

for all $h \in L_{\infty}(G)$ and $f \in L_1(G)$.

We could also consider ${\mathcal E}$ defined by Cesàro sums

$$\langle \mathcal{E}(h), f \rangle = \lim_{\mathcal{U}} \langle \frac{1}{n} (\Phi_{\mu} + \dots + \Phi_{\mu}^{n})(h), f \rangle = \lim_{\mathcal{U}} \langle h, \frac{1}{n} f \star (\mu + \dots + \mu^{n}) \rangle$$

over any ultrafilder \mathcal{U} on \mathbb{N} .

Then we can obtain a von Neumann algebra multiplication on \mathcal{H}_{μ} given by the Choi-Effros product

$$h \circ k = \mathcal{E}(hk),$$

which is unique and independent from he choice of \mathcal{E} .

We call \mathcal{H}_{μ} together with this von Neumann algebra structure is the Poisson boundary of (G, μ) .

More Details about the Boundary

We note that the natural left action $\alpha: G \curvearrowright L_{\infty}(G)$ given by

$$\alpha_s(h)(t) = h(s^{-1}t)$$

is invariant with respect to the Markov operator Φ_{μ} , i.e.,

$$\Phi_{\mu} \circ \alpha_s = \alpha_s \circ \Phi_{\mu}$$

for all $s \in G$ sicne

$$\alpha_s \circ \Phi_{\mu}(h)(t) = \Phi_{\mu}(h)(s^{-1}t) = \int_G h(s^{-1}tg)d\mu(g)$$
$$= \int_G \alpha_s(h)(tg)d\mu(g) = \Phi_{\mu} \circ \alpha_s(h)(t)$$

for all $h \in L_{\infty}(G)$. Therefore, α induces an action $\alpha_{\mu} : G \curvearrowright \mathcal{H}_{\mu}$.

Now it is known that there exists a (unique) measure space (Ω, ν) such that

$$(\mathcal{H}_{\mu},\circ)=L_{\infty}(\Omega,\nu)$$

and the induced action α_{μ} on \mathcal{H}_{μ} corresponds to a measure preserving action on (Ω, ν) . This space (Ω, ν) gives the Poisson boundary of (G, μ) !

Poisson Boundary for Markov Operators on von Neumann Algebras

In general, if we are given a Markov operator Φ on a von Neumann algebra M. Then we can consider Φ -operators to be elements $x \in M$ such that

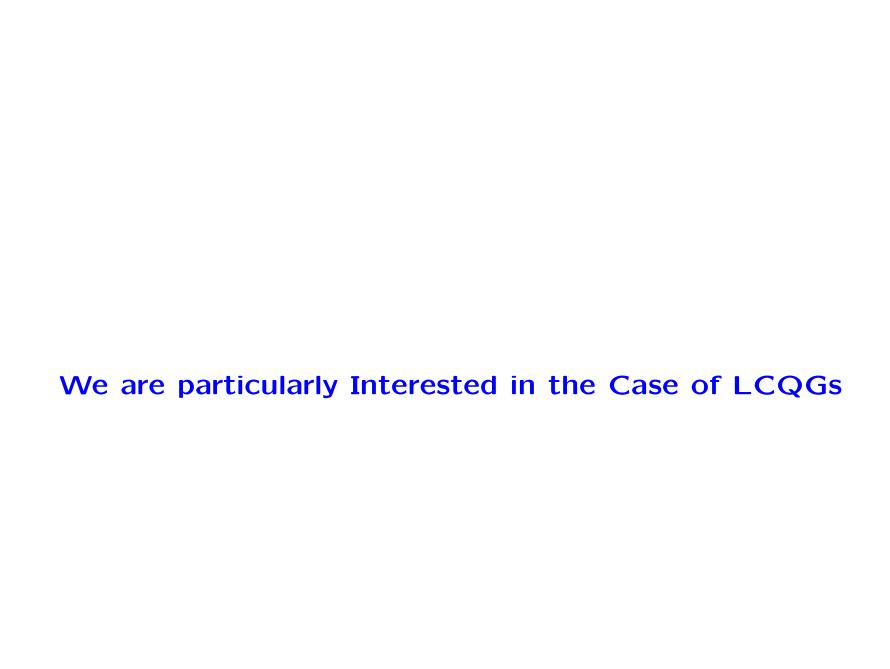
$$\Phi(x) = x.$$

In this case, we can also obtain a conditional expactation

$$\mathcal{E}:M\to\mathcal{H}_{\Phi}$$

from M onto \mathcal{H}_{Φ} , the space of all Φ -harmonic operators, and obtain a von Neumann algebra strucutre on \mathcal{H}_{Φ} .

We call this von Neumann algebra $(\mathcal{H}_{\Phi}, \circ)$ the Poisson boundary of (M, Φ) .



Kustermans and Vaes' Definition of LCQG

A *LCQG* is $\mathbb{G} = (M, \Gamma, \varphi, \psi)$ consisting of

- (1) a von Neumann algebra M
- (2) a co-multiplication $\Gamma: M \to M \bar{\otimes} M$, i.e. a unital normal *-homomorphism satisfying the co-associativity condition

$$(id \otimes \Gamma) \circ \Gamma = (\Gamma \otimes id) \circ \Gamma.$$

(3) a left Haar wight φ , i.e. a n.f.s weight φ on M satisfying

$$(\iota \otimes \varphi) \Gamma(x) = \varphi(x) \mathbf{1}$$

(4) a right Haar weight ψ , i.e. n.f.s weight ψ on M satisfying

$$(\psi \otimes \iota) \Gamma(x) = \psi(x) 1.$$

It is known that for every locally compact quantum group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$, there exists a *dual quantum group* $\widehat{\mathbb{G}} = (\widehat{M}, \widehat{\Gamma}, \widehat{\varphi}, \widehat{\psi})$ such that we may obtain the perfect Pontryagin duality

$$\hat{\bar{\mathbb{G}}} = \mathbb{G}.$$

Commutative LCQGs are exactly

$$\mathbb{G}_a = (L_{\infty}(G), \Gamma_a, \varphi_a, \psi_a),$$

where the comultiplication $\Gamma_a(h)(s,t) = h(st)$, and

Co-commutative LCQGs are exactly

$$\widehat{\mathbb{G}}_a = (VN(G), \Gamma_G, \varphi_G, \psi_G),$$

where the comultiplication $\Gamma_G(\lambda_s) = \lambda_s \otimes \lambda_s$.

Banach Algebra Structure on $L_1(\mathbb{G}) = M_*$

The co-multiplication

$$\Gamma: L_{\infty}(\mathbb{G}) \to L_{\infty}(\mathbb{G}) \overline{\otimes} L_{\infty}(\mathbb{G})$$

induces an associative completely contractive multiplication

$$\star = \Gamma_* : f_1 \otimes f_2 \in L_1(\mathbb{G}) \widehat{\otimes} L_1(\mathbb{G}) \to f_1 \star f_2 = (f_1 \otimes f_2) \circ \Gamma \in L_1(\mathbb{G})$$

on $L_1(\mathbb{G}) = M_*$ such that $A = (L_1(\mathbb{G}), \star)$ is a faithful completely contractive Banach algebra with

$$\langle L_1(\mathbb{G}) \star L_1(\mathbb{G}) \rangle = L_1(\mathbb{G}).$$

If \mathbb{G}_a is a commutative LCQG, then $\star = \Gamma_{a*}$ is just the convolution on the convolution algebra

$$L_1(\mathbb{G}_a) = L_1(G).$$

If $\widehat{\mathbb{G}}_a$ is a co-commutative LCQG, then $\star = \widehat{\Gamma}_*$ is just the pointwise multiplication on the Fourier algebra

$$L_1(\widehat{\mathbb{G}}_a) = VN(G)_* = A(G).$$

Positive Definite Centralizers of $L_1(\mathbb{G})$

A map bounded m on $L_1(\mathbb{G})$ is called a (right) centralizer of $L_1(\mathbb{G})$ if

$$m(f \star g) = f \star m(g).$$

We are particularly interested in those positive definite cb-centralizers, i.e. centralizers m such that

$$\Phi_m = m^*$$

are Markov operators on $L_{\infty}(\mathbb{G})$. In this case, we can consider the Poisson boundary \mathcal{H}_m associated with $(L_{\infty}(\mathbb{G}), \Phi_m)$.

- If $\mathbb{G}_a = L_{\infty}(G)$, we have $m = m_{\mu}$ for some probablity measure μ on G.
- If $\widehat{\mathbb{G}}_a = VN(G)$, we have $m = m_{\varphi}$ for some state φ in B(G), i.e., a positive definite function φ on G with $\varphi(e) = 1$.

Extension to $B(L_2(\mathbb{G}))$

Theorem [J-N-R]: Let m be a positive definite cb-centralizer of $L_1(\mathbb{G})$, then the Markov operator $\Phi_m = m^*$ has a natural normal exitesion to a Markov operator $\Theta(m)$ on $B(L_2(\mathbb{G}))$.

Let G be a locally compact group.

• If $\mu \in M(G)$ is a probability measure on G, then the extended Markov operator $\Theta(\mu)$ on $B(L_2(G))$ is given by

$$\Theta(\mu)(x) = \int_G \rho_s x \rho_s^* d\mu(s).$$

• If φ is a state in B(G), then we can write

$$\varphi(st^{-1}) = \langle \xi | \pi(st^{-1})\xi \rangle = \langle \pi(s^{-1})\xi | \pi(t^{-1})\xi \rangle$$

for some unitary representation $\pi: G \to B(\ell_2(I))$ and unit vectio $\xi \in \ell_2(I)$. In this case, we can regard $\pi(t^{-1})\xi = [\beta_i] \in M_{I,1}(\ell_\infty(G))$. It follows that $\Theta(\varphi)$ on $B(L_2(G))$ is given by

$$\Theta(\varphi)(x) = \sum_{i} \beta_{i}^{*} x \beta_{i}.$$

We can consider the Poisson boundary $\mathcal{H}_{\Theta(m)}$ of $(B(L_2(\mathbb{G})), \Theta(m))$.

We wonder what is the connection between \mathcal{H}_m and $\mathcal{H}_{\Theta(m)}$.

Theorem [K-N-R]: Let \mathbb{G} be a locally compact quantum group and let m be a positive definite cb-multiplier of $L_1(\mathbb{G})$. Then $\mathcal{H}_{\Theta(m)}$ is *-isomorphic to the crossed product of \mathbb{G} on \mathcal{H}_m , i.e. we have

$$\mathcal{H}_{\Theta(m)} = \mathbb{G} \ltimes \mathcal{H}_m.$$

Remark: This result was first proved by Izumi for discrete groups. It was proved later on by Jawoski and Neufang for $L_{\infty}(G)$ case

$$\mathcal{H}_{\Theta(\mu)} = G \ltimes \mathcal{H}_{\mu}$$

and by Neufang and Runde for VN(G) case

$$\mathcal{H}_{\Theta(\varphi)} = (\mathcal{H}_{\varphi} \cup L_{\infty}(G))'' = \widehat{G} \ltimes \mathcal{H}_{\varphi}$$

is a von Neumann subalgebra of $B(L_2(G))$, under the assumption that either $\varphi \in A(G)$, or the group G has the AP.

One Remark on the Proof:

We need to consider the induced co-action of $\mathbb G$ on $\mathcal H_m$ given by

$$\Gamma_m: \mathcal{H}_m \to L_{\infty}(\mathbb{G}) \bar{\otimes}_{\mathcal{F}} \mathcal{H}_m \subseteq B(L_2(\mathbb{G}) \bar{\otimes} B(L_2(\mathbb{G})).$$

The Fubini product is the correct tensor product to consider here when we regard \mathcal{H}_m as an operator sysytem in $B(L_2(\mathbb{G}))$!

Once we regard \mathcal{H}_m (with its own multiplication as we discussed above) we have

$$L_{\infty}(\mathbb{G})\bar{\otimes}\mathcal{H}_m=L_{\infty}(\mathbb{G})\bar{\otimes}_{\mathcal{F}}\mathcal{H}_m.$$

This is exactly why Neufang and Runde need Approximation Property of \mathbb{G} .

Summary

$$\mu$$
 – harmonic on $L_{\infty}(G)$

$$\varphi$$
 – harmonic on VN(G)
 Chu and Lau

$$\mu - \text{harmonic on B}(L_2(G))$$

$$Jaworski \ and \ Neufang$$

$$\mu$$
 - harmonic on B(L₂(G)) φ - harmonic on B(L₂(G)) $Neufang$ and $Runde$

$$\mathcal{H}_{\Theta(\mu)} = G \ltimes \mathcal{H}_{\mu}$$

$$\mathcal{H}_{\Theta(\varphi)} = \widehat{G} \ltimes \mathcal{H}_{\varphi}$$

In general, we have

$$\mathcal{H}_{\Theta(m)} = \mathbb{G} \ltimes \mathcal{H}_m$$

for general locally compact quantum groups.

Some Other Interesting Results

Classicial Choquet—Deny Theorem

Theorem: Let μ be a probablity measure on an abelian group G. Then

 $\mathcal{H}_{\mu} = \{ h \in L_{\infty}(G) : h \text{ are constant functions on cosets of } G_{\mu} \},$

where G_{μ} is the smallest closed subgroup generated by the support of $\mu.$

Hence if the semigroup (resp. subgroup) generated by $supp\mu$ is dense in G, i.e. if μ is non-degenerate or adopted, then $H_{\mu}=\mathbb{C}1$.

Choquet-Deny theorem remains true for some nonabilian groups, but for sure fails for non-amenable groups.

A Characterization of Amenability

Theorem: Let G be a σ -compact locally compact group. Then TFAE:

- 1) G is amenable;
- 2) There exists a probability measure μ on G such that $\mathcal{H}_{\mu} = \mathbb{C}1$.

Therefore, Choquet-Deny theorem fals for any apoted probability measure on non-amenable groups.

Theorem [K-N-R]: Let G be a locally compact quantum group such that $L_1(\mathbb{G})$ is separable Then TFAE:

- 1) G is amenable
- 2) There exists a quantum probability measure $\mu \in M(\mathbb{G}) = C_0(\mathbb{G})^*$ such that $\mathcal{H}_{\mu} = \mathbb{C}1$.

Subalgebra Question

Another question is that when \mathcal{H}_{μ} is a subalgebra of $L_{\infty}(G)$?

Theorem: Let G be a locally compact group and μ a non-degerate (or an adopted) probability measure on G. Then TFAE:

- 1) \mathcal{H}_{μ} is a subalgebra of $L_{\infty}(G)$;
- 2) $\mathcal{H}_{\mu} = \mathbb{C}1$.

In quantum setting, we say that $\mu \in M_u(\mathbb{G})$ is non-degenerate if for any non-zero positive $x \in C_u(\mathbb{G})$, we have $\langle x, \mu^n \rangle \neq 0$ for some $n \in \mathbb{N}$.

Theorem [K-N-R]: Let \mathbb{G} be a locally compact quantum group and μ a non-degerate state in $M_u(\mathbb{G})$. Then TFAE:

- 1) \mathcal{H}_{μ} is a subalgebra of $L_{\infty}(\mathbb{G})$;
- 2) $\mathcal{H}_{\mu} = \mathbb{C}1$.

Dual Version of Choquet-Deny Theorem

Chu and Lau have considered the dual version of Choquet-Deny theorem. In this case, we replace

$$L_{\infty}(G)$$
 by $VN(G)$,

replace

probability measures μ on G by states φ in B(G),

where states φ in B(G) are exactly positive definite functions on G with $\varphi(e)=1$.

The theory is strikingly different from the classical one.

Theorem [Chu-Lau]: For any state $\varphi \in B(G)$,

$$G_{\varphi} = \{ g \in G : \varphi(g) = 1 \}$$

is always a closed subgroup of G and we have

$$\mathcal{H}_{\varphi} = \lambda(G_{\varphi})''$$

which is always a von Neumann subalgebra of VN(G)!

In this dual form, a state $\varphi \in B(G)$ is adopted if $G_{\varphi} = \{e\}$.

Compact Quantum Group Case

Theorem [F-S]: Let \mathbb{G} be a compact quantum group and let ϕ be an idempotent state in $M_u(\mathbb{G}) = C_u(\mathbb{G})^*$. Then ϕ induces a unital completely positive projection $\tilde{\Phi}_{\phi}$ on $C_u(\mathbb{G})$ and

$$\tilde{\mathcal{H}}_{\phi} = \{ x \in C_u(\mathbb{G}) : \tilde{\Phi}_{\phi}(x) = x \}$$

is a C*-subalgebra of $C_u(\mathbb{G})$.

Now if μ is a state in $M_u(\mathbb{G}) = C_u(\mathbb{G})^*$, then the right multiplication map $m_{\mu}(f) = f \star \mu$ defines a positive definite cb-centralizer of $L_1(\mathbb{G})$. $\Phi_{\mu} = m_{\mu}^*$ is a Markov operator on $L_{\infty}(\mathbb{G})$.

Theorem [K-N-R]: Let \mathbb{G} be a compact quantum group and let μ be a state in $M_u(\mathbb{G}) = C_u(\mathbb{G})^*$. Then the Poisson boundary \mathcal{H}_{μ} is a von Neumann subalgebra of $L_{\infty}(\mathbb{G})$!

If μ is non-degenerate, we have $\mathcal{H}_{\mu} = \mathbb{C}1$.

- Izumi 2002: $\mathbb{G} = \widehat{SU_q(2)}$, $\mathcal{H}_{\mu} = L_{\infty}(SU_q(2)/\mathbb{T})$.
- Neshveyev-Tuset 2006: $\mathbb{G} = \widehat{SU_q(N)}$, $\mathcal{H}_{\mu} = L_{\infty}(SU_q(N)/\mathbb{T}^{N-1})$.
- Vaes-Vander Vennet 2008: $\mathbb{G} = \widehat{A_o(F)}$.
- Vaes-Vander Vennet 2010: $\mathbb{G} = \widehat{A_u(F)}$
- K-N-R 2011: $\mathbb{G} = SU_q(2)$

Thank you for your attention!