A noncommutative Amir-Cambern Theorem

Jean ROYDOR (RIMS Kyoto University)

supported by JSPS

University of Waterloo, Banach Algebras 2011

Amir-Cambern Theorem

Th. (Banach-Stone'37):

Let $T: C(K_1) \to C(K_2)$ surjective linear isometry. Then $\exists u \in C(K_2, \mathbb{T})$ and $\tau: K_2 \to K_1$ homeomorphism s.t.

$$T(f) = u(f \circ \tau), \ \forall f \in C(K_1)$$

In particular, $C(K_1) = C(K_2)$ *-isomorphically.

Amir-Cambern Theorem

Th. (Banach-Stone'37):

Let $T: C(K_1) \to C(K_2)$ surjective linear isometry. Then $\exists u \in C(K_2, \mathbb{T})$ and $\tau: K_2 \to K_1$ homeomorphism s.t.

$$T(f) = u(f \circ \tau), \ \forall f \in C(K_1)$$

In particular, $C(K_1) = C(K_2)$ *-isomorphically.

Def. (Banach-Mazur distance):

Let \mathcal{X}, \mathcal{Y} Banach spaces,

$$d(\mathcal{X}, \mathcal{Y}) = \inf\{\|T\|\|T^{-1}\| : T : \mathcal{X} \to \mathcal{Y} \text{ linear isom.}\}$$

Amir-Cambern Theorem

Th. (Banach-Stone'37):

Let $T: C(K_1) \to C(K_2)$ surjective linear isometry. Then $\exists u \in C(K_2, \mathbb{T})$ and $\tau: K_2 \to K_1$ homeomorphism s.t.

$$T(f) = u(f \circ \tau), \quad \forall f \in C(K_1)$$

In particular, $C(K_1) = C(K_2)$ *-isomorphically.

Def. (Banach-Mazur distance):

Let \mathcal{X}, \mathcal{Y} Banach spaces,

$$d(\mathcal{X}, \mathcal{Y}) = \inf\{\|T\|\|T^{-1}\| : T : \mathcal{X} \to \mathcal{Y} \text{ linear isom.}\}$$

Th. (Amir-Cambern'66):

If $d(C(K_1), C(K_2)) < 2$, then $C(K_1) = C(K_2)$ *-isomorphically.

A noncommutative analogue

```
C(K)-spaces \leadsto unital C^*-alg.

L_{\infty}-spaces \leadsto von Neumann alg.

Uniform alg. \leadsto unital nonselfadjoint op. alg.

Banach spaces \leadsto operator spaces.

and (very important !):

Bounded linear maps \leadsto Completely bounded linear maps
```

Def. (Banach-Mazur cb-distance):

Let \mathcal{X},\mathcal{Y} operator spaces,

$$d_{cb}(\mathcal{X}, \mathcal{Y}) = \inf\{\|T\|_{cb}\|T^{-1}\|_{cb} : T : \mathcal{X} \to \mathcal{Y} \text{ linear isom.}\}$$

Rmk:
$$d_{cb}(C(K_1), C(K_2)) = d(C(K_1), C(K_2))$$

A noncommutative analogue

```
C(K)-spaces \leadsto unital C^*-alg.

L_{\infty}-spaces \leadsto von Neumann alg.

Uniform alg. \leadsto unital nonselfadjoint op. alg.

Banach spaces \leadsto operator spaces.

and (very important !):

Bounded linear maps \leadsto Completely bounded linear maps
```

Def. (Banach-Mazur cb-distance):

Let \mathcal{X}, \mathcal{Y} operator spaces,

$$d_{cb}(\mathcal{X}, \mathcal{Y}) = \inf\{\|T\|_{cb}\|T^{-1}\|_{cb} : T : \mathcal{X} \to \mathcal{Y} \text{ linear isom.}\}$$

Rmk: $d_{cb}(C(K_1), C(K_2)) = d(C(K_1), C(K_2))$

Questions:

Does there exist $\varepsilon_0 > 0$ s.t. for any unital C^* -alg. \mathcal{A}, \mathcal{B} : if $d_{cb}(\mathcal{A}, \mathcal{B}) < 1 + \varepsilon_0$, then $\mathcal{A} = \mathcal{B}$ *-isomorphically ? If yes, can we find explicit ε_0 ?

Main Result

Th. (R.):

There exists $\varepsilon_0 > 0$ such that for any von Neumann algebras $\mathcal{M}, \mathcal{N}, \ d_{cb}(\mathcal{M}, \mathcal{N}) < 1 + \varepsilon_0$ implies $\mathcal{M} = \mathcal{N}$ *-isomorphically.

Main Result

Th. (R.):

There exists $\varepsilon_0 > 0$ such that for any von Neumann algebras $\mathcal{M}, \mathcal{N}, \ d_{cb}(\mathcal{M}, \mathcal{N}) < 1 + \varepsilon_0$ implies $\mathcal{M} = \mathcal{N}$ *-isomorphically.

Step 1 Prove that the unitization of a cb-isomorphism with small bound is almost multiplicative.

Main Result

Th. (R.):

There exists $\varepsilon_0 > 0$ such that for any von Neumann algebras $\mathcal{M}, \mathcal{N}, \ d_{cb}(\mathcal{M}, \mathcal{N}) < 1 + \varepsilon_0$ implies $\mathcal{M} = \mathcal{N}$ *-isomorphically.

- Step 1 Prove that the unitization of a cb-isomorphism with small bound is almost multiplicative.
- Step 2 Show that a vN alg. is stable under perturbations by cb-close multiplications.

Almost multiplicativity: the unital case

Th. (D. Blecher'01):

Let $T: A \to B$ be surjective linear complete isometry between unital operator algebras.

Then \exists unitary $u \in \mathcal{B} \cap \mathcal{B}^*$ and unital completely isometric algebra homomorphism $\pi : \mathcal{A} \to \mathcal{B}$ s.t. $T(x) = u\pi(x)$.

In particular, if T(1) = 1, then T is multiplicative.

Almost multiplicativity: the unital case

Th. (D. Blecher'01):

Let $T: A \to B$ be surjective linear complete isometry between unital operator algebras.

Then \exists unitary $u \in \mathcal{B} \cap \mathcal{B}^*$ and unital completely isometric algebra homomorphism $\pi : \mathcal{A} \to \mathcal{B}$ s.t. $T(x) = u\pi(x)$.

In particular, if T(1) = 1, then T is multiplicative.

Notation:
$$T^{\vee}(x,y) = T(xy) - T(x)T(y)$$

Almost multiplicativity: the unital case

Th. (D. Blecher'01):

Let $T: A \to B$ be surjective linear complete isometry between unital operator algebras.

Then \exists unitary $u \in \mathcal{B} \cap \mathcal{B}^*$ and unital completely isometric algebra homomorphism $\pi : \mathcal{A} \to \mathcal{B}$ s.t. $T(x) = u\pi(x)$. In particular, if T(1) = 1, then T is multiplicative.

Notation: $T^{\vee}(x,y) = T(xy) - T(x)T(y)$

Th. (R.):

For any $\eta>0$, there exists $\rho\in(0,1)$ such that for any unital operator algebras $\mathcal{A},\ \mathcal{B},$ for any unital cb-isomorphism $T:\mathcal{A}\to\mathcal{B},$ $\|T\|_{cb}\leq 1+\rho$ and $\|T^{-1}\|_{cb}\leq 1+\rho$ imply $\|T^\vee\|_{cb}<\eta.$

Characterizing invertible elements

We need to prove an operator space characterization of invertible elements in a C^* -algebra.

Lemma:

Let \mathcal{A} be a unital C^* -algebra and $x \in \mathcal{A}$, $||x|| \leq 1$. Then, x is invertible if and only if there exists $\alpha > 0$ such that for any $y \in \mathcal{A}^{**}$ of norm one,

$$\| \begin{bmatrix} x \\ y \end{bmatrix} \|^2 \ge \alpha + \|y\|^2 \text{ and } \| [x \ y] \|^2 \ge \alpha + \|y\|^2$$
 (C)

In this case, the supremum of the α 's satisfying (C) equals $\|x^{-1}\|^{-2}$ and moreover, condition (C) is actually satisfied for any $y \in \mathcal{A}^{**}$.

Rmk: the 'only if' part is true in any unital operator algebra.

Almost multiplicativity: the general case

Prop.:

Let \mathcal{A} be a unital operator algebra and \mathcal{B} be unital C^* -algebra. Let $T: \mathcal{A} \to \mathcal{B}$ be a cb-isomorphism such that $\|T\|_{cb} \|T^{-1}\|_{cb} \leq 1 + \epsilon$, with $\epsilon < \sqrt{2} - 1$. Then T(1) is invertible and

$$\|T(1)^{-1}\| \leq \frac{1}{\|T\|_{cb}} \sqrt{\frac{(1+\epsilon)^2}{2-(1+\epsilon)^2}}.$$

Almost multiplicativity: the general case

Prop.:

Let \mathcal{A} be a unital operator algebra and \mathcal{B} be unital C^* -algebra. Let $T: \mathcal{A} \to \mathcal{B}$ be a cb-isomorphism such that $\|T\|_{cb} \|T^{-1}\|_{cb} \leq 1 + \epsilon$, with $\epsilon < \sqrt{2} - 1$. Then T(1) is invertible and

$$\|T(1)^{-1}\| \leq \frac{1}{\|T\|_{cb}} \sqrt{\frac{(1+\epsilon)^2}{2-(1+\epsilon)^2}}.$$

Corollary 1:

For any $\eta>0$, there exists $\epsilon\in(0,\sqrt{2}-1)$ such that for any unital C^* -algebras $\mathcal{A},\ \mathcal{B},$ for any cb-isomorphism $T:\mathcal{A}\to\mathcal{B},\ \|T\|_{cb}=1$ and $\|T^{-1}\|_{cb}\leq 1+\epsilon$ implies $\|L^\vee\|_{cb}<\eta,$ where $L=T(1)^{-1}T.$

Stability under perturbation by cb-close multiplications

Notation:

 $H^k(\mathcal{A}, \mathcal{A})$ the kth Hochschild cohomology group of \mathcal{A} over itself. $m_{\mathcal{A}}$ denotes the original multiplication on \mathcal{A} .

Th. (B.E. Johnson'77, I. Raeburn & J. Taylor'77)

Let ${\mathcal A}$ be a Banach algebra satisfying

$$H^2(\mathcal{A},\mathcal{A})=H^3(\mathcal{A},\mathcal{A})=0.$$

Then there exist $\delta, C>0$ such that for every multiplication m on $\mathcal A$ satisfying $\|\mathbf m-\mathbf m_{\mathcal A}\|\leq \delta$, there is a bounded linear isomorphism $\Phi:\mathcal A\to\mathcal A$ such that

$$\|\Phi - id_{\mathcal{A}}\| \le C \|m - m_{\mathcal{A}}\|$$
 and $\Phi(m(x, y)) = \Phi(x)\Phi(y)$.

Hochschild cohomology

Let \mathcal{A} be a Banach algebra and \mathcal{X} be a Banach \mathcal{A} -module. Denote $\mathcal{L}^0(\mathcal{A},\mathcal{X})=\mathcal{X}$ and $\mathcal{L}^k(\mathcal{A},\mathcal{X})$ the space of all bounded k-linear maps from $\mathcal{A}^k\to\mathcal{X}$.

Hochschild cohomology

Let \mathcal{A} be a Banach algebra and \mathcal{X} be a Banach \mathcal{A} -module. Denote $\mathcal{L}^0(\mathcal{A},\mathcal{X})=\mathcal{X}$ and $\mathcal{L}^k(\mathcal{A},\mathcal{X})$ the space of all bounded k-linear maps from $\mathcal{A}^k\to\mathcal{X}$.

Define the 'coboundary maps' $\delta^k: \mathcal{L}^k(\mathcal{A},\mathcal{X}) \to \mathcal{L}^{k+1}(\mathcal{A},\mathcal{X})$ by:

$$\begin{array}{lll} \delta^{0}(x)(a) &=& ax-xa \quad \text{and} \\ \delta^{k}(\varphi)(a_{1},...,a_{k+1}) &=& a_{1}\varphi(a_{2},...,a_{k+1}) \\ &&+ \sum_{i=1}^{k-1} (-1)^{i}\varphi(a_{1},...,a_{i-1},(a_{i}a_{i+1}),...,a_{k+1}) \\ &&+ (-1)^{k}\varphi(a_{1},...,a_{k})a_{k+1} \end{array}$$

Hochschild cohomology

Let $\mathcal A$ be a Banach algebra and $\mathcal X$ be a Banach $\mathcal A$ -module. Denote $\mathcal L^0(\mathcal A,\mathcal X)=\mathcal X$ and

 $\mathcal{L}^k(\mathcal{A},\mathcal{X})$ the space of all bounded *k*-linear maps from $\mathcal{A}^k o \mathcal{X}$.

Define the 'coboundary maps' $\delta^k:\mathcal{L}^k(\mathcal{A},\mathcal{X})\to\mathcal{L}^{k+1}(\mathcal{A},\mathcal{X})$ by:

$$\begin{array}{lll} \delta^0(x)(a) &=& ax-xa & \text{and} \\ \delta^k(\varphi)(a_1,...,a_{k+1}) &=& a_1\varphi(a_2,...,a_{k+1}) \\ &&+ \sum_{i=1}^{k-1} (-1)^i \varphi(a_1,...,a_{i-1},(a_ia_{i+1}),...,a_{k+1}) \\ &&+ (-1)^k \varphi(a_1,...,a_k) a_{k+1} \end{array}$$

Def.:

Elements of Ran δ^{k-1} are called *coboundaries*.

Elements of Ker δ^k are called *cocycles*.

The *k*th Hochschild cohomology group is denoted:

$$H^k(\mathcal{A}, \mathcal{X}) = \operatorname{Ker} \delta^k / \operatorname{Ran} \delta^{k-1}$$
.

Stability under perturbation by cb-close multiplications

Prop.:

Let A be an operator algebra satisfying

$$H_{cb}^2(\mathcal{A},\mathcal{A}) = H_{cb}^3(\mathcal{A},\mathcal{A}) = 0.$$
 (*)

Then there exist $\delta, C>0$ such that for every multiplication m on $\mathcal A$ satisfying $\|\mathbf m-\mathbf m_{\mathcal A}\|_{cb}\leq \delta$, there is a completely bounded linear isomorphism $\Phi:\mathcal A\to\mathcal A$ such that

$$\|\Phi - id_{\mathcal{A}}\|_{cb} \le C\|m - m_{\mathcal{A}}\|_{cb}$$
 and $\Phi(m(x, y)) = \Phi(x)\Phi(y)$.

Moreover, if \mathcal{A} is a von Neumann algebra, then (*) is necessarily satisfied and one can choose $\delta=2^{-1}10^{-10}$ and C=4.

Stability under perturbation by cb-close multiplications

Prop.:

Let A be an operator algebra satisfying

$$H_{cb}^2(\mathcal{A},\mathcal{A}) = H_{cb}^3(\mathcal{A},\mathcal{A}) = 0.$$
 (*)

Then there exist $\delta, \mathcal{C}>0$ such that for every multiplication m on \mathcal{A} satisfying $\|\mathbf{m}-\mathbf{m}_{\mathcal{A}}\|_{cb}\leq \delta$, there is a completely bounded linear isomorphism $\Phi:\mathcal{A}\to\mathcal{A}$ such that

$$\|\Phi - id_{\mathcal{A}}\|_{cb} \le C\|m - m_{\mathcal{A}}\|_{cb}$$
 and $\Phi(m(x, y)) = \Phi(x)\Phi(y)$.

Moreover, if \mathcal{A} is a von Neumann algebra, then (*) is necessarily satisfied and one can choose $\delta=2^{-1}10^{-10}$ and C=4.

Th. (E. Christensen, A. Sinclair '89):

Let \mathcal{M} be a vN alg. Then, $H^k_{cb}(\mathcal{M},\mathcal{M})=0$ for any k.

Proof of the main result

Corollary 2:

Let $\mathcal M$ be a von Neumann algebra. Then for every multiplication m on $\mathcal M$ satisfying $\parallel m-m_{\mathcal M}\parallel_{cb}\leq 2^{-1}10^{-10}$, there is a completely bounded linear isomorphism $\Phi:\mathcal M\to\mathcal M$ such that

$$\Phi(\mathsf{m}(x,y)) = \Phi(x)\Phi(y).$$

Proof of the main result

Corollary 2:

Let $\mathcal M$ be a von Neumann algebra. Then for every multiplication m on $\mathcal M$ satisfying $\parallel m - m_{\mathcal M} \parallel_{cb} \le 2^{-1} 10^{-10}$, there is a completely bounded linear isomorphism $\Phi: \mathcal M \to \mathcal M$ such that

$$\Phi(\mathsf{m}(x,y)) = \Phi(x)\Phi(y).$$

Corollary 1:

For any $\eta>0$, there exists $\epsilon\in(0,\sqrt{2}-1)$ such that for any unital C^* -algebras $\mathcal{A},\ \mathcal{B},$ for any cb-isomorphism $T:\mathcal{A}\to\mathcal{B},\ \|T\|_{cb}=1$ and $\|T^{-1}\|_{cb}\leq 1+\epsilon$ implies $\|L^\vee\|_{cb}<\eta$, where $L=T(1)^{-1}T$.