Do pseudospectra determine norm behavior of matrices with simple eigenvalues?

Thomas Ransford

Université Laval, Québec

20th Conference on Banach algebras Waterloo, 3–10 August 2011

Introduction

Let A be a unital Banach algebra, and let $a \in A$. We write $\sigma(a)$ for the spectrum of a.

For $\epsilon > 0$, the ϵ -pseudospectrum of a is

$$\sigma_{\epsilon}(a) := \{\lambda \in \mathbb{C} : \|(a - \lambda 1)^{-1}\| > 1/\epsilon\}.$$

Introduction

Let A be a unital Banach algebra, and let $a \in A$. We write $\sigma(a)$ for the spectrum of a.

For $\epsilon > 0$, the ϵ -pseudospectrum of a is

$$\sigma_{\epsilon}(a) := \{\lambda \in \mathbb{C} : \|(a - \lambda 1)^{-1}\| > 1/\epsilon\}.$$

Equivalent characterization:

$$\sigma_{\epsilon}(a) = \bigcup_{\|b\| < \epsilon} \sigma(a+b).$$

Introduction

Let A be a unital Banach algebra, and let $a \in A$. We write $\sigma(a)$ for the spectrum of a.

For $\epsilon > 0$, the ϵ -pseudospectrum of a is

$$\sigma_{\epsilon}(a) := \{\lambda \in \mathbb{C} : \|(a - \lambda 1)^{-1}\| > 1/\epsilon\}.$$

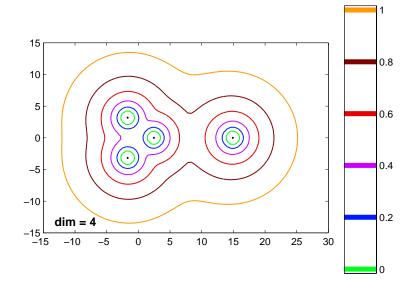
Equivalent characterization:

$$\sigma_{\epsilon}(a) = \bigcup_{\|b\| < \epsilon} \sigma(a+b).$$

In the case where A is the C*-algebra of $n \times n$ matrices, there is a third characterization, in terms of the smallest singular value :

$$\sigma_{\epsilon}(a) = \{\lambda \in \mathbb{C} : s_{\min}(a - \lambda 1) < \epsilon\}.$$

Example : pseudospectra of a 4×4 matrix



Just how much do pseudospectra tell us?

Naive question

Let a, b be $n \times n$ matrices such that $\sigma_{\epsilon}(a) = \sigma_{\epsilon}(b)$ for all $\epsilon > 0$. Must a and b be unitarily equivalent?

Just how much do pseudospectra tell us?

Naive question

Let a, b be $n \times n$ matrices such that $\sigma_{\epsilon}(a) = \sigma_{\epsilon}(b)$ for all $\epsilon > 0$. Must a and b be unitarily equivalent?

Answer: No. For example, consider

$$a:=egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix} \qquad b:=egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}.$$

Then, for all $\lambda \in \mathbb{C}$,

$$\|(a-\lambda 1)^{-1}\| = \|(b-\lambda 1)^{-1}\| = \max\{|\lambda|^{-1}, |1-\lambda|^{-1}\}.$$

Do pseudospectra determine norm behavior?

Question

Let a, b be $n \times n$ matrices such that $\sigma_{\epsilon}(a) = \sigma_{\epsilon}(b)$ for all $\epsilon > 0$. Must we have ||f(a)|| = ||f(b)|| for all polynomials f?

Do pseudospectra determine norm behavior?

Question

Let a, b be $n \times n$ matrices such that $\sigma_{\epsilon}(a) = \sigma_{\epsilon}(b)$ for all $\epsilon > 0$. Must we have ||f(a)|| = ||f(b)|| for all polynomials f?

Answer: No (Greenbaum-Trefethen, 1993).

Idea : Take $a := a' \oplus c$ and $b := b' \oplus c$, where

$$\|(c-\lambda 1)^{-1}\| \ge \max \Big\{ \|(a'-\lambda 1)^{-1}\|, \|(b'-\lambda 1)^{-1}\| \Big\} \quad (\lambda \in \mathbb{C}).$$

This is possible, and with enough flexibility to have $||a|| \neq ||b||$. However, a and b are necessarily derogatory.

Do pseudospectra determine norm behavior?

Question

Let a, b be $n \times n$ matrices such that $\sigma_{\epsilon}(a) = \sigma_{\epsilon}(b)$ for all $\epsilon > 0$. Must we have ||f(a)|| = ||f(b)|| for all polynomials f?

Answer: No (Greenbaum-Trefethen, 1993).

Idea : Take $a := a' \oplus c$ and $b := b' \oplus c$, where

$$\|(c-\lambda 1)^{-1}\| \ge \max \Big\{ \|(a'-\lambda 1)^{-1}\|, \|(b'-\lambda 1)^{-1}\| \Big\} \quad (\lambda \in \mathbb{C}).$$

This is possible, and with enough flexibility to have $||a|| \neq ||b||$. However, a and b are necessarily derogatory.

New question

Does the answer change if a, b have only simple eigenvalues?

The answer is still 'no'

Example (Ransford-Rostand, 2011)

Let

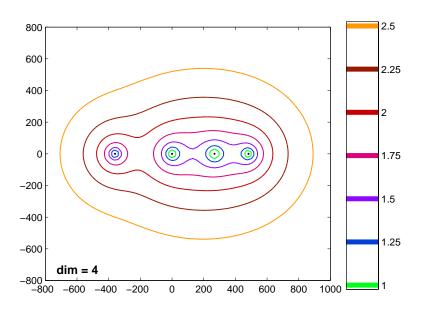
$$a := \begin{pmatrix} 0 & 0 & 0 & 0 \\ 180 & -360 & 0 & 0 \\ -90 + 120\sqrt{5} & 180 + 60\sqrt{5} & 120\sqrt{5} & 0 \\ 450 & -180 & -360 & 216\sqrt{5} \end{pmatrix}$$

and

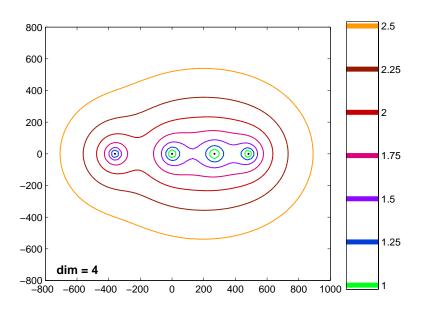
$$b := \begin{pmatrix} 0 & 0 & 0 & 0 \\ 120 & -360 & 0 & 0 \\ 45\sqrt{130} - 15\sqrt{26} & 45\sqrt{26} + 15\sqrt{130} & 120\sqrt{5} & 0 \\ 30\sqrt{130} & 10\sqrt{130} & 80\sqrt{5} & 216\sqrt{5} \end{pmatrix}.$$

Then
$$\sigma_{\epsilon}(a) = \sigma_{\epsilon}(b)$$
 for all $\epsilon > 0$, but $||a^2|| \neq ||b^2||$.

Pseudospectra of a



Pseudospectra of b



Proofs

Proof that $\sigma_{\epsilon}(a) = \sigma_{\epsilon}(b)$ for all $\epsilon > 0$. By explicit computation, for all $\lambda, \zeta \in \mathbb{C}$ we have

$$\det\Bigl((a-\lambda 1)(a-\lambda 1)^*-\zeta 1\Bigr)=\det\Bigl((b-\lambda 1)(b-\lambda 1)^*-\zeta 1\Bigr).$$

So $a - \lambda 1$ and $b - \lambda 1$ have the same singular values for all $\lambda \in \mathbb{C}$. In particular, $s_{\min}(a - \lambda 1) = s_{\min}(b - \lambda 1)$ for all $\lambda \in \mathbb{C}$.

Proofs

Proof that $\sigma_{\epsilon}(a) = \sigma_{\epsilon}(b)$ for all $\epsilon > 0$.

By explicit computation, for all $\lambda, \zeta \in \mathbb{C}$ we have

$$\det\Bigl((a-\lambda 1)(a-\lambda 1)^*-\zeta 1\Bigr)=\det\Bigl((b-\lambda 1)(b-\lambda 1)^*-\zeta 1\Bigr).$$

So $a - \lambda 1$ and $b - \lambda 1$ have the same singular values for all $\lambda \in \mathbb{C}$. In particular, $s_{\min}(a - \lambda 1) = s_{\min}(b - \lambda 1)$ for all $\lambda \in \mathbb{C}$.

Proof that $||a^2|| \neq ||b^2||$.

By explicit computation again,

$$\det(a^2a^{*2} - \zeta 1) - \det(b^2b^{*2} - \zeta 1) = \gamma \zeta^2,$$

where γ is a non-zero constant. Hence a^2, b^2 have no common singular values other than zero. In particular $||a^2|| \neq ||b^2||$.

Lemma

Let a and b be 4 \times 4 matrices. Then a - $\lambda 1$ and b - $\lambda 1$ have the same singular values for all $\lambda \in \mathbb{C}$ iff

- (i) $\sigma(a) = \sigma(b)$,
- (ii) $tr(a^{j}a^{*k}) = tr(b^{j}b^{*k}) \ (1 \le j \le k \le 3)$, and
- (iii) $tr(aa^*aa^*) = tr(bb^*bb^*)$.

Lemma

Let a and b be 4 \times 4 matrices. Then a - $\lambda 1$ and b - $\lambda 1$ have the same singular values for all $\lambda \in \mathbb{C}$ iff

- (i) $\sigma(a) = \sigma(b)$,
- (ii) $tr(a^{j}a^{*k}) = tr(b^{j}b^{*k}) \ (1 \le j \le k \le 3)$, and
- (iii) $tr(aa^*aa^*) = tr(bb^*bb^*).$

Strategy:

• Seek a, b so that (i),(ii),(iii) hold for a, b but not for a^2, b^2 .

Lemma

Let a and b be 4 \times 4 matrices. Then a $-\lambda 1$ and b $-\lambda 1$ have the same singular values for all $\lambda \in \mathbb{C}$ iff

- (i) $\sigma(a) = \sigma(b)$,
- (ii) $tr(a^{j}a^{*k}) = tr(b^{j}b^{*k}) \ (1 \le j \le k \le 3)$, and
- (iii) $tr(aa^*aa^*) = tr(bb^*bb^*).$

Strategy:

- Seek a, b so that (i),(ii),(iii) hold for a, b but not for a^2, b^2 .
- Set $a := v^{-1}dv$ and $b := w^{-1}dw$, where d is diagonal with simple eigenvalues and v, w are invertible. Then (i) holds.

Lemma

Let a and b be 4 \times 4 matrices. Then a $-\lambda 1$ and b $-\lambda 1$ have the same singular values for all $\lambda \in \mathbb{C}$ iff

- (i) $\sigma(a) = \sigma(b)$,
- (ii) $tr(a^{j}a^{*k}) = tr(b^{j}b^{*k}) \ (1 \le j \le k \le 3)$, and
- (iii) $tr(aa^*aa^*) = tr(bb^*bb^*).$

Strategy:

- Seek a, b so that (i),(ii),(iii) hold for a, b but not for a^2, b^2 .
- Set $a := v^{-1}dv$ and $b := w^{-1}dw$, where d is diagonal with simple eigenvalues and v, w are invertible. Then (i) holds.
- Note that (ii) holds iff $p \circ p^{-t} = q \circ q^{-t}$ (Hadamard product), where $p := vv^*$ and $q := ww^*$. This is independent of d.

Lemma

Let a and b be 4 \times 4 matrices. Then a - $\lambda 1$ and b - $\lambda 1$ have the same singular values for all $\lambda \in \mathbb{C}$ iff

- (i) $\sigma(a) = \sigma(b)$,
- (ii) $tr(a^{j}a^{*k}) = tr(b^{j}b^{*k}) (1 \le j \le k \le 3)$, and
- (iii) $tr(aa^*aa^*) = tr(bb^*bb^*)$.

Strategy:

- Seek a, b so that (i),(ii),(iii) hold for a, b but not for a^2, b^2 .
- Set $a := v^{-1}dv$ and $b := w^{-1}dw$, where d is diagonal with simple eigenvalues and v, w are invertible. Then (i) holds.
- Note that (ii) holds iff $p \circ p^{-t} = q \circ q^{-t}$ (Hadamard product), where $p := vv^*$ and $q := ww^*$. This is independent of d.
- Fix positive matrices p, q so that $p \circ p^{-t} = q \circ q^{-t}$, and then, if possible, choose d so that (iii) holds for a, b but not a^2, b^2 .

How a and b were found (continued)

Appropriate choice of p,q satisfying $p \circ p^{-t} = q \circ q^{-t}$:

$$p:=\begin{pmatrix}1 & * & * & 0\\ * & 1 & 0 & *\\ \alpha & 0 & 1 & *\\ 0 & \beta & * & 1\end{pmatrix}\quad \text{and}\quad q:=\begin{pmatrix}1 & * & * & *\\ * & 1 & 0 & 0\\ * & 0 & 1 & *\\ * & 0 & \gamma & 1\end{pmatrix}.$$

Here α, β, γ are free parameters, and all the other entries * are determined by them.

• Same construction works with the operator norm replaced by any Schatten p-norm for $p \neq 2$. For p = 2, pseudospectra DO determine norm behavior (Greenbaum-Trefethen, 1993).

- Same construction works with the operator norm replaced by any Schatten p-norm for $p \neq 2$. For p = 2, pseudospectra DO determine norm behavior (Greenbaum-Trefethen, 1993).
- In our example $||a^2||/||b^2|| \approx 1.00162$. How much larger can we make this ratio?

- Same construction works with the operator norm replaced by any Schatten p-norm for $p \neq 2$. For p = 2, pseudospectra DO determine norm behavior (Greenbaum-Trefethen, 1993).
- In our example $||a^2||/||b^2|| \approx 1.00162$. How much larger can we make this ratio ?
- Is there an example of a pair of matrices a, b having identical pseudospectra and simple eigenvalues, but with $||a|| \neq ||b||$?

- Same construction works with the operator norm replaced by any Schatten p-norm for $p \neq 2$. For p = 2, pseudospectra DO determine norm behavior (Greenbaum-Trefethen, 1993).
- In our example $||a^2||/||b^2|| \approx 1.00162$. How much larger can we make this ratio?
- Is there an example of a pair of matrices a, b having identical pseudospectra and simple eigenvalues, but with $||a|| \neq ||b||$?

Reference:

T. Ransford, J. Rostand, 'Pseudospectra do not determine norm behavior, even for matrices with only simple eigenvalues', *Linear Alg. Appl.*, to appear.

- Same construction works with the operator norm replaced by any Schatten p-norm for $p \neq 2$. For p = 2, pseudospectra DO determine norm behavior (Greenbaum-Trefethen, 1993).
- In our example $||a^2||/||b^2|| \approx 1.00162$. How much larger can we make this ratio?
- Is there an example of a pair of matrices a, b having identical pseudospectra and simple eigenvalues, but with $||a|| \neq ||b||$?

Reference:

T. Ransford, J. Rostand, 'Pseudospectra do not determine norm behavior, even for matrices with only simple eigenvalues', *Linear Alg. Appl.*, to appear.

