Continuity ideals of homomorphisms from $C_0(\Omega)$

Hung Le Pham

Victoria University of Wellington, New Zealand

Waterloo, August 2011

Summary

- Structure of a homomorphism θ from $C_0(\Omega)$ into a Banach algebra.
- Describe the structure of the continuity ideal of θ .
- The complexity of the prime ideal structure of $C_0(\Omega)$.

Preliminaries

- Let Ω be a locally compact space.
- $C_0(\Omega)$ is the space of all continuous functions f vanishing at infinity on Ω , i.e.

$$\{t \in \Omega : |f(t)| \ge \varepsilon\}$$
 is compact for every $\varepsilon > 0$.

- $C_0(\Omega)$ is an algebra with pointwise operations.
- $C_0(\Omega)$ is a Banach algebra with uniform norm

$$|f|_{\Omega} := \sup\{|f(t)|: t \in \Omega\}.$$

Kaplansky's theorem

Theorem (I. Kaplansky, 1949)

For each algebra norm $\|\cdot\|$ on $\mathcal{C}_0(\Omega)$, we have

$$||f|| \ge |f|_{\Omega}$$
 for every $f \in C_0(\Omega)$.

Consequence:

• Each *complete* algebra norm on $C_0(\Omega)$ is equivalent to the uniform norm $|\cdot|_{\Omega}$.

4

Another consequence of Kaplansky's theorem

- Let θ be a *continuous* homomorphism from $C_0(\Omega)$ into a Banach algebra B.
- Then $\theta(\mathcal{C}_0(\Omega))$ must be a closed subalgebra of B.
- $\theta(C_0(\Omega))$ is isomorphic to $C_0(\Omega)/\ker(\theta)$ as Banach algebras.
- $\theta(\mathcal{C}_0(\Omega))$ must has the form $\mathcal{C}_0(\Gamma)$ for some locally compact space Γ .
- Hence, each *continuous* homomorphism from $\mathcal{C}_0(\Omega)$ into a Banach algebra is essentially a quotient map onto its range.

Kaplansky's conjecture

Conjecture

- Every algebra norm on $C_0(\Omega)$ is equivalent to the uniform norm $|\cdot|_{\Omega}$.
- Equivalently, every homomorphism from $C_0(\Omega)$ into a Banach algebra is continuous.
- If $\theta: \mathcal{C}_0(\Omega) \to B$ is a discontinuous homomorphism, then $f \mapsto |f|_{\Omega} + \|\theta(f)\|$ is an algebra norm not equivalent to $|\cdot|_{\Omega}$.

Theorem (G. Dales (1979) and J. Esterle (1978))

Assuming CH, for each infinite locally compact space Ω , there exists a discontinuous homomorphism from $\mathcal{C}_0(\Omega)$ into a Banach algebra.

Ideals in commutative Banach algebra A

- An ideal I is modular if and only if A/I is unital.
- The **radical** of A, denoted by Rad A, is

Rad
$$A = \left\{ a \in A : \ r(a) := \lim \|a^n\|^{1/n} = 0 \right\}.$$

- A is said to be **radical** if Rad A = A.
- A proper ideal *P* is **prime** if $ab \notin P$ whenever $a, b \in A \setminus P$.
- A proper ideal *I* is **semiprime** if a² ∉ *I* whenever a ∈ A \ I,
 ⇔ *I* is the intersection of a collection of prime ideals.

Ideals in $C_0(\Omega)$

- $M_p = \{ f \in C_0(\Omega) : f(p) = 0 \}.$
- $J_p = \{ f \in C_0(\Omega) : f(x) = 0 \text{ on a neighbourhood of } p \}.$
- Ω^{\flat} is the one-point compactification of Ω . We always adjoin one more point ∞ to Ω .
- $M_{\infty} = \mathcal{C}_0(\Omega)$ and $J_{\infty} = \mathcal{C}_c(\Omega)$.
- For a prime ideal P, \exists a unique $p \in \Omega^{\flat}$ such that $J_p \subseteq P \subseteq M_p$.
- P is modular if and only if $p \in \Omega$.

An important fact on prime ideals in $C_0(\Omega)$

- If P and Q_1, Q_2 are prime ideals such that $P \subseteq Q_i$, then either $Q_1 \subseteq Q_2$ or $Q_2 \subseteq Q_1$.
- Equivalently: in $C_0(\Omega)$, the collection of prime ideals that contain a given prime ideal is a chain!
- A consequence: if a semiprime ideal *I* contains the intersection of *n* prime ideals, then *I* itself is the intersection of *n* prime ideals.

The continuity ideals

Let *A* and *B* be commutative Banach algebras.

Let $\theta: A \to B$ be a homomorphism.

Then the **continuity ideal of** θ is defined as

$$\mathcal{I}(\theta) = \{ a \in A : x \mapsto \theta(ax) \text{ is continuous} \}$$

- $\mathcal{I}(\theta)$ is an ideal, measuring the continuity of θ .
- $I \subseteq \mathcal{I}(\theta)$ for each ideal I in A such that θ is continuous on I.
- If $A = C_0(\Omega)$ then θ is continuous on $\mathcal{I}(\theta)$.

Structure of (discontinuous) homomorphisms

Theorem (W. Bade and P. Curtis, 1960; with some improvement by J. Esterle and A. Sinclair)

Let $\theta: \mathcal{C}_0(\Omega) \to B$ be a (discontinuous) homomorphism. Then

- **①** $\mathcal{I}(\theta)$ is the largest ideal of $\mathcal{C}_0(\Omega)$ on which θ is continuous.
- ② There exists a (non-empty) finite subset $\{p_1, \ldots, p_n\}$ of Ω^{\flat} such that

$$\bigcap_{i=1}^n J_{p_i} \subseteq \mathcal{I}(\theta) \subseteq \bigcap_{i=1}^n M_{p_i}.$$

- **3** There exists a continuous homomorphism $\mu: \mathcal{C}_0(\Omega) \to B$ such that $\mu = \theta$ on a dense subalgebra of $\mathcal{C}_0(\Omega)$ containing $\mathcal{I}(\theta)$.
- **3** Set $\nu = \theta \mu$. Then ν maps into Rad B, and the restriction of ν to $\bigcap_{i=1}^{n} M_{p_i}$ is a homomorphism ν' onto a dense subalgebra of Rad B such that $\mathcal{I}(\theta) = \ker \nu'$.

Theorem (cont.)

- **5** There exist linear maps $\nu_1, \ldots, \nu_n : \mathcal{C}_0(\Omega) \to \operatorname{Rad} B$ such that

 - **2** each $\nu_i | M_{p_i}$ $(1 \le i \le n)$ is a non-zero homomorphism, and
 - 3 $\nu_i(\mathcal{C}_0(\Omega)) \cdot \nu_j(\mathcal{C}_0(\Omega)) = \{0\}$ for each $1 \leq i \neq j \leq n$.
- **5** The ideals $\ker \theta$ and $\mathcal{I}(\theta)$ are always intersections of prime ideals.
- In the case where B is radical, then $\mathcal{I}(\theta) = \ker \theta$ is always an intersection of non-modular prime ideals.

The existence of discontinuous homomorphisms revisited

Theorem (Dales and Esterle)

Assuming CH.

- Let P be any nonmodular prime ideal in $C_0(\Omega)$ such that $|C_0(\Omega)/P| = \mathfrak{c}$. Then there exists a homomorphism θ from $C_0(\Omega)$ into a radical Banach algebra R such that $\ker \theta = P$.
- ② Let P be any prime ideal in $C_0(\Omega)$ such that $|C_0(\Omega)/P| = \mathfrak{c}$. Then there exists a homomorphism θ from $C_0(\Omega)$ into a Banach algebra B such that $\mathcal{I}(\theta) = P$.

The role of CH:

- (R. Solovay and H. Woodin) There is a model of ZFC where every homomorphism from $C_0(\Omega)$ is continuous.
- (H. Woodin, 1993) There is a model of ZFC $+ \neg$ CH such that, for every infinite locally compact space Ω , there exists a discontinuous homomorphism from $C_0(\Omega)$.

Continuity ideals and finite intersections of primes

Corollary

Assuming CH. Let I be any ideal in $C_0(\Omega)$ such that I is a finite intersection of prime ideals and such that $|C_0(\Omega)/I| = \mathfrak{c}$. Then there exists a homomorphism θ from $C_0(\Omega)$ into a Banach algebra B such that $\mathcal{I}(\theta) = I$.

- Is $\mathcal{I}(\theta)$ always a finite intersection of prime ideals?
- (J. Esterle, 1978) $\mathcal{I}(\theta)$ is always a finite intersection of prime ideals when Ω is an F-space. E.g. when Ω is extremely disconnected.

Is $\mathcal{I}(\theta)$ always a finite intersection of prime ideals?

Theorem (P, 2008)

Let Ω be a metrizable locally compact space.

- Suppose that Ω^{\flat} has "finite limit level". Then $\mathcal{I}(\theta)$ is a finite intersection of prime ideals for every homomorphism θ from $\mathcal{C}_0(\Omega)$ into another Banach algebra.
- ② Suppose that Ω^{\flat} has "infinite limit level". Assuming CH. Then there exists a homomorphism θ from $\mathcal{C}_0(\Omega)$ into a Banach algebra B such that $\mathcal{I}(\theta)$ is not a finite intersection of prime ideals.
 - If Ω^{\flat} is metrizable and has "finite limit level" then Ω is countable.
 - R^b has "infinite limit level".

Pseudo-finite families of prime ideals in $C_0(\Omega)$

Let Ω be a locally compact space.

Definition

A family $(P_i)_{i \in I}$ of prime ideals in $C_0(\Omega)$ is **pseudo-finite** if

$$f \in \bigcup_{i \in I} P_i \implies f \in P_i$$
 for all but finitely many $i \in I$.

- If *I* is infinite then $\bigcup_{i \in I} P_i$ is a prime ideal in $C_0(\Omega)$.
- If *J* is an infinite subset of *I* then $\bigcup_{i \in J} P_i = \bigcup_{i \in I} P_i$.

Compact families of prime ideals in $C_0(\Omega)$

Definition

- A family $\mathfrak C$ of prime ideals in $\mathcal C_0(\Omega)$ is **relatively compact** if every sequence in $\mathfrak C$ contains a pseudo-finite subsequence.
- A family $\mathfrak C$ of prime ideals in $\mathcal C_0(\Omega)$ is **compact** if every sequence in $\mathfrak C$ contains a pseudo-finite subsequence whose union also belongs to $\mathfrak C$.

There is a topology on the collection of prime ideals on $C_0(\Omega)$ such that:

- Each pseudo-finite sequence is a convergent sequence.
- Each (relatively) compact family is a (relatively) sequentially compact set.

Continuity ideals and compact families of prime ideals

For each ideal I in $C_0(\Omega)$ and each $f \in C_0(\Omega)$, set

$$I:f:=\{g\in\mathcal{C}_0(\Omega)\colon\ fg\in I\}$$

Theorem (P, 2010)

Let $\theta: \mathcal{C}_0(\Omega) \to B$ be a homomorphism. Set \mathfrak{P} be the collection of prime ideals of the form $\mathcal{I}(\theta)$: f for some $f \in \mathcal{C}_0(\Omega)$. Then

- $\mathcal{I}(\theta) = \bigcap \{P \colon P \in \mathfrak{P}\};$
- \mathfrak{P} is a relatively compact family of prime ideals in $\mathcal{C}_0(\Omega)$.

Remarks:

- When B is radical, $\mathcal{I}(\theta) = \ker(\theta)$.
- Moreover, when B is radical, prime ideals of the form ker(θ):f must be nonmodular.
- In general, $ker(\theta) = \mathcal{I}(\theta) \cap a$ closed ideal.

The closure of a relatively compact family

Let $\mathfrak P$ be any relatively compact family of prime ideals in $\mathcal C_0(\Omega)$. Define $\mathfrak Q$ to be the family of all ideals in $\mathcal C_0(\Omega)$ that are unions of countably many ideals in $\mathfrak P$.

Obviously:

- Every ideal in $\mathfrak Q$ is a prime ideal.
- $\mathfrak Q$ contains $\mathfrak P$ as well as the unions of all pseudo-finite sequences in $\mathfrak P$.

It turns out that:

- \Omega\) is a compact family of prime ideals.
- Ω is the collection of the unions of all pseudo-finite sequences in
 \$\pa\$.
- ullet $\Rightarrow \mathfrak{Q}$ is the smallest compact family of prime ideals that contains \mathfrak{P} .

The structure of a compact family of prime ideals

Let \mathfrak{Q} be any compact family of prime ideals in $\mathcal{C}_0(\Omega)$.

- Every chain in \(\Omega \) is well-ordered.
- In particular, every nonempty chain in Q has the smallest element.
- Take \mathfrak{P}_0 be the collection of minimal elements of \mathfrak{Q} . Then \mathfrak{P}_0 is relatively compact and

$$\bigcap \left\{ P\colon\ P\in\mathfrak{P}_{0}\right\} =\bigcap \left\{ P\colon\ P\in\mathfrak{Q}\right\} .$$

• \mathfrak{P}_0 is "non-redundant" in the sense that, for each $Q \in \mathfrak{P}_0$,

$$\bigcap \{P\colon\ P\in \mathfrak{P}_0\setminus \{Q\}\}\nsubseteq Q.$$

In fact, $\bigcap \{P \colon P \in \mathfrak{Q} \setminus \{Q\}\} \nsubseteq Q$.

• {Prime ideals of the form $\mathcal{I}(\theta)$:f} is "non-redundant".

The structure of a compact family of prime ideals (cont.)

- Since prime ideals in $C_0(\Omega)$ that contain a given prime ideal form a chain, \mathfrak{Q} in fact has the form of a "downward" forest.
- Lets call the union of a maximal chain in $\mathfrak Q$ one of its roof.
- A roof must either be a prime ideal in $C_0(\Omega)$ or $C_0(\Omega)$ itself.
- Q always has only finitely many roofs (i.e. the forest has only finitely many "downward" trees).

The (partial) converse

Theorem (P, 2010)

Let I be the intersection of a relatively compact family $\mathfrak P$ of prime ideals in $\mathcal C_0(\Omega)$ with the properties that every chain in the closure of $\mathfrak P$ is countable and that

$$|\mathcal{C}_0(\Omega)/I| = \mathfrak{c}.$$

Assuming CH, then there exists a homomorphism θ from $C_0(\Omega)$ into a Banach algebra such that $\mathcal{I}(\theta) = I$.

- The closure $\mathfrak Q$ of $\mathfrak P$ is the smallest compact family of prime ideals that contains $\mathfrak P$.
- Every chain in \(\Omega \) is well-ordered.
- If $\mathfrak P$ is countable, then every chain in $\mathfrak Q$ is countable.
- If I is the intersection of a countable family of prime ideals, then \$\parphi_0\$ is countable, and so I is the intersection of a countable, relatively compact family of prime ideals.

Proof:

- Since the closure \(\mathcal{Q} \) has only finitely many roofs, we need only consider the case when \(\mathcal{Q} \) has a single roof.
- Using this, we may further reduce to the case when all prime ideals in \(\Omega\) is nonmodular.
- Thus we only need to prove the following.

Theorem (P, 2010)

Let I be the intersection of a relatively compact family $\mathfrak P$ of nonmodular prime ideals in $\mathcal C_0(\Omega)$ with the properties that every chain in the closure of $\mathfrak P$ is countable and that

$$|\mathcal{C}_0(\Omega)/I| = \mathfrak{c}.$$

Assuming CH, then there exists a homomorphism θ from $C_0(\Omega)$ into a radical Banach algebra such that $\ker(\theta) = I$.

Proof: the main construction

• Let I, \mathfrak{P} be as in the previous slide.

Proposition

Then there exist a prime ideal \mathcal{P} in $c_0 = \mathcal{C}_0(\mathbb{N})$ and, for each $P \in \mathfrak{P}$, a homomorphism $\theta_P : \mathcal{C}_0(\Omega) \to c_0/\mathcal{P}$ such that

- $\ker \theta_P = P$ for every $P \in \mathfrak{P}$;
- the set $\{\theta_P(f) \mid P \in \mathfrak{P}\}$ is finite for each $f \in \mathcal{C}_0(\Omega)$.
- Based on the construction of Dales and Woodin for the case when $|\mathfrak{P}|=1$ so that I is a prime ideal itself.
- Assuming CH, by Dales and Esterle's theorem, there exists an embedding $\iota: c_0/\mathcal{P} \hookrightarrow R$ into a radical Banach algebra.
- $f \mapsto (\iota \circ \theta_P(f))_{P \in \mathfrak{P}}$ is then a homomorphism from $\mathcal{C}_0(\Omega)$ into (the radical of) $\ell^{\infty}(\mathfrak{P}, R)$ with kernel precisely I.

Proof: the role of compactness in the precedding construction

- In the construction of $\{\theta_P:\ P\in\mathfrak{P}\}$ instead of the condition that
 - the set $\{\theta_P(f)\mid P\in\mathfrak{P}\}$ is finite for each $f\in\mathcal{C}_0(\Omega)$ we actually only need to aim for the weaker condition that
 - the set $\{\theta_{P_n}(f) \mid P \in \mathfrak{P}\}$ is finite for each $f \in \mathcal{C}_0(\Omega)$ and each pseudo-finite sequence (P_n) in \mathfrak{P} .
- If, for some $f \in \mathcal{C}_0(\Omega)$, the set $\{\theta_P(f) \mid P \in \mathfrak{P}\}$ were infinite, then, by the relative compactness of \mathfrak{P} , there existed a pseudo-finite sequence (P_n) in \mathfrak{P} such that $\theta_{P_n}(f)$ $(n \in \mathbb{N})$ are all distinct.

The role of countability I

- The hypothesis that every chain in \(\Omega\) is countable is required because of the limitation in our proof.
- For simplicity, say we have a well-ordered chain indexed by ordinals smaller than a given ordinal.
- We want to construct inductively, for each ordinal α , a subalgebra A_{α} of $C_0(\Omega)$ such that:
 - $A_{\alpha} \supseteq A_{\beta}$ when $\alpha \leq \beta$;
 - A_{α} is "sufficiently big".
- If we have A_{α} we can construct $A_{\alpha+1}$.
- However, if we have $A_{\alpha}, A_{\alpha+1}, \dots, A_{\alpha+n}$ $(n \in \mathbb{N}), \dots$, how to construct $A_{\alpha+\omega}$? Is $\bigcap_{n \in \mathbb{N}} A_{\alpha+n}$ necessarily nonempty?
- If we construct $A_{\alpha+\omega}$ first, then there is no problem. \Rightarrow We can only deal with countable ordinals.

Problem

Can we eliminate this limitation?

The role of countability II

- If the ideal I = ∩ 𝔻 is the intersection of a countable family of prime ideals, then it is the intersection of a countable, relatively compact family of prime ideals.
- In this case, every chain in the closure of this countable, relatively compact family of prime ideals is countable.
- Question: Is the continuity ideal of a homomorphism $\theta: \mathcal{C}_0(\Omega) \to B$ always a countable intersection of prime ideals?
- Answer: No.

Theorem (P, 2009)

Suppose that Ω is metrizable and has "infinite limit level" (e.g. $\Omega = \mathbb{R}$), then there exists a "nonredundant" pseudo-finite family $(P_i)_{i \in \mathfrak{c}}$ of prime ideals in $\mathcal{C}_0(\Omega)$; i.e.

- If $f \in \bigcup_{i \in \mathfrak{c}} P_i$, then $f \in P_i$ for all but finitely many $i \in \mathfrak{c}$;
- $\bigcap_{i \in \mathfrak{c}, i \neq \alpha} P_i \nsubseteq P_{\alpha}$, for each $\alpha \in \mathfrak{c}$;

- Note that any pseudo-finite family of prime ideals is relatively compact and every chain in its closure has length at most 2.
- Thus a previous theorem can be strengthened as follows.

Theorem

Let Ω be a metrizable locally compact space.

- Suppose that Ω^{\flat} has "finite limit level". Then $\mathcal{I}(\theta)$ is a finite intersection of prime ideals for every homomorphism θ from $\mathcal{C}_0(\Omega)$ into another Banach algebra.
- ② Suppose that Ω^{\flat} has "infinite limit level". Assuming CH. Then there exists a homomorphism θ from $C_0(\Omega)$ into a Banach algebra B such that $\mathcal{I}(\theta)$ is not a countable intersection of prime ideals.

The role of countability III

- Let $\mathfrak P$ be a relatively compact family of prime ideals in $\mathcal C_0(\Omega)$.
- We may suppose that $\mathfrak P$ is "non-redundant".
- Set \(\mathcal{Q} \) be the closure of \(\mathcal{P} \).

Question

Is every chain in $\mathfrak Q$ necessarily countable?

- Recall that every chain in Q is necessarily well-ordered.
- "Cheat" question: Is a well-ordered chain of prime ideals in $\mathcal{C}_0(\Omega)$ necessarily countable?
- (M. Mandelker, 1968) There exits a well-ordered chain of prime ideals in $C_0(\mathbb{R})$ order isomorphic to κ for every countable ordinal κ .

Answer to the "cheat" question: No.

Theorem (P, 2009)

Suppose that Ω is metrizable and has "infinite limit level", then there exists a well-ordered chain of prime ideals in $\mathcal{C}_0(\Omega)$ that is order-isomorphic to \mathfrak{c} .

• In fact, if Ω is metrizable, separable, and uncountable (e.g. \mathbb{R}), then, for every ordinal κ of cardinality \mathfrak{c} , there exists a well-ordered chain of prime ideals in $\mathcal{C}_0(\Omega)$ that is order-isomorphic to κ .

Question

- Is every chain in \(\Omega\) necessarily countable?
- The same question but only for those $\mathfrak P$ that (known to) arises from the continuity ideals.

Examples of compact families of prime ideals

- Finite unions of pseudo-finite families of prime ideals are relatively compact. More complicated example:
- Let κ be an ordinal, considered with the order topology.
- Suppose that κ has "finite limit level" $\Rightarrow \kappa$ is countable.
- Enlarging κ if necessary, we may suppose further that κ is compact.
- Suppose that Ω be a metrisable and has "infinite limit level".
- Then there exists a family of prime ideals $(P_{\alpha} : \alpha \in \kappa)$ in $C_0(\Omega)$ satisfying the following:
 - (P_{α_n} : $n \ge n_0$) is a pseudo-finite sequence with union P_{α} for some $n_0 \in \mathbb{N}$ whenever (α_n) converges to α in the order topology of κ ;
 - a condition guarantees the non-redundancy.

• It follows that $(P_{\alpha} : \alpha \in \kappa)$ is a compact family of prime ideals such that

$$\bigcap_{\alpha\in\kappa}P_{\alpha}$$

is never an intersection of a finite union of pseudo-finite families of prime ideals.

• Varying κ , we can make $(P_{\alpha} : \alpha \in \kappa)$ to contain chain of any *finite* length.

Let $\mathfrak P$ be a "non-redundant" relatively compact family of prime ideals in $\mathcal C_0(\Omega)$ and set $\mathfrak Q$ be the closure of $\mathfrak P$.

Question

- Is every chain in \(\Omega\) necessarily finite?
- The same question but only for those $\mathfrak P$ that (known to) arises from the continuity ideals.

Prime z-filters and prime z-ideals

- Let $f \in C(\Omega)$. Then **Z** $(f) := \{ t \in \Omega \mid f(t) = 0 \}$.
- $\bullet \ \mathbf{Z}[\Omega] := \{\mathbf{Z}(f) \mid f \in \mathcal{C}(\Omega)\}.$
- A linear subspace I of $C_0(\Omega)$ is a z-ideal if

$$f \in I, \ g \in \mathcal{C}_0(\Omega), \ \mathbf{Z}(g) \supseteq \mathbf{Z}(f) \quad \Rightarrow \quad g \in I.$$

• A *z*-filter \mathcal{F} on Ω is a nonempty proper subset of $\mathbf{Z}[\Omega]$ s.t.

$$Z_1 \text{ and } Z_2 \in \mathcal{F} \qquad \Rightarrow \quad Z_1 \cap Z_2 \in \mathcal{F},$$
 $Z_1 \in \mathcal{F}, \ Z_2 \in \mathbf{Z}[\Omega], \ Z_2 \supseteq Z_1 \Rightarrow \qquad Z_2 \in \mathcal{F}.$

• A z-filter \mathcal{F} is a **prime** z-filter if

$$Z_1$$
 and $Z_2 \in \mathbf{Z}[\Omega] \setminus \mathcal{F} \Rightarrow Z_1 \cup Z_2 \notin \mathcal{F}$.

• Set of (prime) z-filters \leftrightarrow Set of (prime) z-ideals

$$\mathcal{F}$$
 \leftrightarrow $\{f \in \mathcal{C}_0(\Omega) \mid \mathbf{Z}(f) \in \mathcal{F}\}.$

A reduction to prime *z*-filters

- Let \mathfrak{P} be a "non-redundant" relatively compact family of prime ideals in $\mathcal{C}_0(\Omega)$.
- Set \(\mathcal{Q} \) be the closure of \(\mathcal{P} \).
- Then:
 - Every ideal in $\mathfrak{Q} \setminus \mathfrak{P}$ is a prime z-ideal.
 - **2** Each $P \in \mathfrak{P}$ contains a prime z-ideal P_z such that

$$\{P_z \mid P \in \mathfrak{P}\}$$

is a "non-redundant" relatively compact family of prime z-ideals with closure \mathfrak{Q} .

 Thus previous questions can reduce to corresponding questions on prime z-filters.

Further question

- (Bade and Curtis) Homomorphisms from $C_0(\Omega)$ into Banach algebras are built from homomorphisms from $C_0(\Omega)$ into radical Banach algebras.
- Suppose that $\theta: \mathcal{C}_0(\Omega) \to R$ is a radical homomorphism. Then $\ker(\theta)$ is the intersection of a relatively compact family of nonmodular prime ideals.
- Conversely, given an ideal I which is the intersection of a relatively compact family $\mathfrak P$ of nonmodular prime ideals in $\mathcal C_0(\Omega)$ (with some additional conditions at least for now). We can construct a radical homomorphism of a very specific form:

- First, there exist a radical Banach algebra R_0 , and, for each $P \in \mathfrak{P}$, a homomorphism $\varphi_P : \mathcal{C}_0(\Omega) \to R_0$ such that
 - $\ker \varphi_P = P$ for every $P \in \mathfrak{P}$;
 - the set $\{\varphi_P(f) \mid P \in \mathfrak{P}\}$ is finite for each $f \in \mathcal{C}_0(\Omega)$.
- Then, the map $f \mapsto (\varphi_P(f))_{P \in \mathfrak{P}}$ is a homomorphism from $\mathcal{C}_0(\Omega)$ into Rad $\ell^{\infty}(\mathfrak{P}, R_0)$ with kernel precisely I.

Question

Let $\theta:\mathcal{C}_0(\Omega)\to R$ be a radical homomorphism and let $\mathfrak P$ be the relatively compact family of prime ideals associated with $\ker(\theta)=\mathcal I(\theta)$. Does there exists another radical Banach algebra R_0 such that

- Rad $\ell^{\infty}(\mathfrak{P}, R_0) \subseteq R$; and
- ② θ is formed from a family $(\varphi_P)_{P \in \mathfrak{P}}$ of homomorphisms into R_0 as above.

General commutative algebras

Let A and B be commutative Banach algebras.

Let $\theta: A \to B$ be a homomorphism.

In general, $\mathcal{I}(\theta)$ is not necessarily an intersection of prime ideals.

The **prime radical** of $\mathcal{I}(\theta)$ is

$$\sqrt{\mathcal{I}(\theta)} := \{ a \in A : a^n \in \mathcal{I}(\theta) \text{ for some } n \in \mathbb{N} \}.$$

 $\sqrt{\mathcal{I}(\theta)}$ is the intersection of all prime ideals that contain $\mathcal{I}(\theta)$.

Theorem

Let $\mathfrak P$ be the collection of minimal ideals among the prime ideals of the form $\mathcal I(\theta)$:a for some $a \in A$. Then

- $\sqrt{\mathcal{I}(\theta)} = \bigcap \{P \colon P \in \mathfrak{P}\};$
- ullet $\mathfrak P$ is a relatively compact family of prime ideals in A.

Theorem

Let $\theta: A \to B$ be an epimorphism. Then

- $\sqrt{\mathcal{I}(\theta)}$ is a finite intersection of prime ideals of the form $\mathcal{I}(\theta)$:a.
- There exists $k \in \mathbb{N}$ such that

$$\sqrt{\mathcal{I}(\theta)} = \left\{ a \in A \colon a^k \in \mathcal{I}(\theta) \right\}.$$

Abstract continuity ideals

Let $\theta: A \to B$ be a homomorphism between two commutative Banach algebras.

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in A. Then

$$\mathcal{I}(\theta)$$
: $a_1 a_2 \cdots a_n \subseteq \mathcal{I}(\theta)$: $a_1 a_2 \cdots a_{n+1} \qquad (\forall n \in \mathbb{N})$.

This is true for any ideal not just for $\mathcal{I}(\theta)$.

However, by the well-known stability lemma, there exists $n_0 \in \mathbb{N}$ such that

$$\mathcal{I}(\theta): a_1 a_2 \cdots a_n = \mathcal{I}(\theta): a_1 a_2 \cdots a_{n+1} \qquad (\forall n \geq n_0).$$

Definition

An ideal I of a commutative algebra A is an **abstract continuity ideal** if, for each sequence (a_n) in A, there exists $n_0 \in \mathbb{N}$ such that

$$1: a_1 a_2 \cdots a_n = 1: a_1 a_2 \cdots a_{n+1} \qquad (\forall n \ge n_0).$$

Theorem

Let A be a commutative algebra and I an ideal of A. Then:

- If I is an abstract continuity ideal, then √I is the intersection of a relatively compact family of prime ideals of the form I:a.
- If I is the intersection of a relatively compact family of prime ideals in A, then I is an abstract continuity ideal.

Corollary

Let Ω be a locally compact space and I an ideal of $C_0(\Omega)$. Then TFAE:

- I is an abstract continuity ideal;
- ② I is the intersection of a relatively compact family of prime ideals in $C_0(\Omega)$;