Operator algebras from commuting semigroup actions

Justin R. Peters

Iowa State University

August, 2011

This is joint work with Benton Duncan.

Setting

Let S be an abelian semigroup, with cancellation, containing 0, and X a compact metric space.

Let σ map S into the semigroup of continuous surjective maps of $X \to X$.

Setting

Let S be an abelian semigroup, with cancellation, containing 0, and X a compact metric space.

Let σ map S into the semigroup of continuous surjective maps of $X \to X$.

The 'polynomial algebra' A_0 consists of (finite) formal sums

$$F = \sum_{t \in \mathcal{S}} S_t f_t$$

where $f_t \in C(X)$, and the elements S_t and f satisfy the commutation relation

$$f S_t = S_t f \circ \sigma_t$$
.

Fix $x \in X$ we define a 'left regular representation' π_x on the algebra \mathcal{A}_0 on $\ell_2(\mathcal{S})$.

Let $\xi_s \in \ell_2(\mathcal{S})$ be the function

$$\xi_s(t) = egin{cases} 1, & ext{if } t = s \ 0, & ext{otherwise}. \end{cases}$$

Fix $x \in X$ we define a 'left regular representation' π_x on the algebra \mathcal{A}_0 on $\ell_2(\mathcal{S})$.

Let $\xi_s \in \ell_2(\mathcal{S})$ be the function

$$\xi_s(t) = egin{cases} 1, & ext{if } t = s \ 0, & ext{otherwise}. \end{cases}$$

Define π_x by $\pi_x(f)\xi_t = f(\sigma_t(x))\xi_t$, $f \in C(X)$ and $\pi_x(S_s)\xi_t = \xi_{s+t}$. Then π_{\times} is an isometric covariant representation of \mathcal{A}_0 and the family of representations π_x , $x \in X$ separates the points of A_0 .

Tensor algebra

We can define a norm on A_0 by

$$||F|| = \sup_{x \in X} ||\pi_x(F)||$$

The completion of A_0 in this norm, which we denote by A or $\mathcal{A}(\mathcal{S}, X)$, is called the *tensor algebra*

Proposition

There is a faithful, completely contractive conditional expectation $P_0: \mathcal{A} \to \mathcal{C}(X)$.

Orbit cocycles

Orbit representations are defined in a manner similar to left regular representations, but the underlying Hilbert space is ℓ_2 (orbit) rather that $\ell_2(\mathcal{S})$.

In order to define these representations, we must first introduce orbit cocvcles.

Fix $x \in X$ and let $S(x) = \{\sigma_t(x) : t \in S\}$ be the orbit of the point x under the action of the semigroup. A map $\mu: \mathcal{S} \times \mathcal{S}(x) \to \mathbb{C}$ is an orbit cocycle if it satisfies

Orbit cocycles

Orbit representations are defined in a manner similar to left regular representations, but the underlying Hilbert space is ℓ_2 (orbit) rather that $\ell_2(\mathcal{S})$.

In order to define these representations, we must first introduce orbit cocvcles.

Fix $x \in X$ and let $S(x) = \{\sigma_t(x) : t \in S\}$ be the orbit of the point x under the action of the semigroup. A map $\mu: \mathcal{S} \times \mathcal{S}(x) \to \mathbb{C}$ is an orbit cocycle if it satisfies

• For each $t \in \mathcal{S}$ and any $y \in \mathcal{S}(x)$

$$\sum_{\sigma_t y_i = \sigma_t(y)} |\mu(t, y_j)|^2 \le 1$$

(cocycle condition)

$$\mu(s+t,y) = \mu(t,y)\mu(s,\sigma_t(y))$$

Orbit representations

Fix $x \in X$ and let $y \in S(x)$. Define the function $\xi_v(w) = 1$ if w = yand 0 otherwise. Now fix an orbit cocycle μ and define the orbit representation ρ_{μ} on this basis by

$$\rho_{\mu}(f)\xi_{y} = f(y)\xi_{y} \text{ for } f \in C(X), \text{ and }$$

$$\rho_{\mu}(S_{t})\xi_{y} = \mu(t, y)\xi_{\sigma_{t}(y)}$$

A calculation shows that ρ_{μ} is a contractive covariant representation.

invariant subspace

To see the relationship between the two classes of representations, fix $x \in X$. We assume that for y in the orbit of x, $\{t \in S : \sigma_t(x) = y\}$ is finite

Consider the map

$$\xi_t \to \xi_{\sigma_t(x)}$$

and extend to linear combinations. If \mathcal{H}_0 is the closed subspace of $\ell_2(\mathcal{S})$ which is mapped to 0, we can show \mathcal{H}_0 is invariant under the representation π_{\star} .

invariant subspace

To see the relationship between the two classes of representations, fix $x \in X$. We assume that for y in the orbit of x, $\{t \in S : \sigma_t(x) = y\}$ is finite.

Consider the map

$$\xi_t \to \xi_{\sigma_t(x)}$$

and extend to linear combinations. If \mathcal{H}_0 is the closed subspace of $\ell_2(\mathcal{S})$ which is mapped to 0, we can show \mathcal{H}_0 is invariant under the representation π_{\star} .

Thus if Q is the orthogonal projection of $\ell_2(S)$ onto \mathcal{H}_0 , the space $\mathcal{H}_1 := Q^{\perp} \ell_2(\mathcal{S})$ is semi-invariant. Thus, one can define a representation

$$\pi_x^1(F) = Q^{\perp}\pi_x(F)|\mathcal{H}_1, F \in \mathcal{A}.$$

left-regular orbit cocycle

We now give an example of an orbit cocycle, called the *left-regular* orbit cocycle. Define

$$\mu(t,y) = \frac{||\pi_x^1(S_t)Q^{\perp}\xi_u||}{||Q^{\perp}\xi_u||} = \frac{||Q^{\perp}\xi_{t+u}||}{||Q^{\perp}\xi_u||}$$

if
$$y = \sigma_u(x)$$
.

One shows this is well defined, and satisfies the two conditions for an orbit cocycle.

left-regular orbit representation

There is a unitary $W: \ell_2(\mathcal{S}(x)) \to \mathcal{H}_1$ such that

$$W^*\pi_x^1(F)W = \rho_{x,\mu}(F), F \in \mathcal{A}$$

where μ is the left-regular orbit cocycle.

definition

Recall that if \mathcal{A} is an operator algebra, the C*-envelope of \mathcal{A} , C*(\mathcal{A}) is a C*-algebra characterized as follows: there is a completely isometric embedding

$$j:\mathcal{A}\to\mathsf{C}^*(\mathcal{A})$$

whose image generated $C^*(A)$ (as a C^* -algebra). Furthermore, if Cis a C*-algebra and $\omega: \mathcal{A} \to \mathcal{C}$ is a completely isometric embedding. then there is a surjective map $\zeta: \mathcal{C} \to C^*(\mathcal{A})$ such that $j = \zeta \circ \omega$.

C*-envelope of the tensor algebra

There is a description of the C*-envelope of the tensor algebra using C*-correspondences, due to Katsura and Muhly & Solel. This was adapted by Davidson & Katsoulis in their memoir on free actions on operator algebras.

C*-envelope of the tensor algebra

There is a description of the C*-envelope of the tensor algebra using C*-correspondences, due to Katsura and Muhly & Solel. This was adapted by Davidson & Katsoulis in their memoir on free actions on operator algebras.

We will need a 'working definition' of the C*-envelope in order to show our mail results: that the left-regular representations are Shilov, and the left-regular orbit representations have a Shilov resolution. We present another approach to the C*-envelope, which is possible in our context.

Extensions of dynamical systems

The second construction of the C*-envelope requires us to consider "extensions" of dynamical systems. An extension of the system (X, S, σ) is another dynamical system (Y, S, τ) together with a continuous surjection $p: Y \to X$ such that the diagram

Extensions of dynamical systems

The second construction of the C*-envelope requires us to consider "extensions" of dynamical systems. An extension of the system (X, S, σ) is another dynamical system (Y, S, τ) together with a continuous surjection $p: Y \to X$ such that the diagram

$$\begin{array}{ccc}
Y & \xrightarrow{\tau_t} & Y \\
\downarrow & & \downarrow \\
X & \xrightarrow{\sigma_t} & X
\end{array}$$

commutes, for all $t \in \mathcal{S}$.

homeomorphism extensions

Since the (abelian) semigroup S is a semigroup with cancellation, it is easy to obtain the enveloping group, namely the smallest abelian group \mathcal{G} which contains \mathcal{S} . That can be expressed as $\mathcal{G} = \mathcal{S} - \mathcal{S}$. However, the group S need not have any connection with the dynamical system (X, \mathcal{S}, σ) since the maps σ_t may not be invertible.

homeomorphism extensions

Since the (abelian) semigroup S is a semigroup with cancellation, it is easy to obtain the enveloping group, namely the smallest abelian group \mathcal{G} which contains \mathcal{S} . That can be expressed as $\mathcal{G} = \mathcal{S} - \mathcal{S}$. However, the group S need not have any connection with the dynamical system (X, \mathcal{S}, σ) since the maps σ_t may not be invertible.

Proposition

There is an extension $(\widetilde{X}, \mathcal{S}, \widetilde{\sigma})$ of the dynamical system (X, \mathcal{S}, σ) for which the maps τ_t are homeomorphisms, $t \in \mathcal{S}$. Furthermore, this extension is "minimal".

main results

From the above, we can consider the group \mathcal{G} as a dynamical system acting on X.

Theorem

The C*-envelope of the tensor algebra can be identified with the crossed product $C(\widetilde{X}) \times_{\widetilde{\sigma}} \mathcal{G}$.

main results

From the above, we can consider the group \mathcal{G} as a dynamical system acting on X.

Theorem

The C*-envelope of the tensor algebra can be identified with the crossed product $C(X) \times_{\widetilde{\sigma}} \mathcal{G}$.

Furthermore, we obtain that the representations π_{\times} of the tensor algebra are Shilov representations. Specifically, there is a representation $\widetilde{\pi}_{x}$ of the crossed product on the Hilbert space $\ell_{2}(\mathcal{G})$ such that

$$\widetilde{\pi}_{\mathsf{x}}(F)|\ell_2(\mathcal{S}) = \pi_{\mathsf{x}}(F), \quad \text{for } F \in \mathcal{A}.$$

shilov resolution

While the left regular orbit representations π^1 need not be Shilov, they have a Shilov resolution. This follows from the fact that the π_{\star} are Shilov, and we have the resolution of Hilbert modules

$$(0) \to \mathcal{H}_0 \to \ell_2(\mathcal{S}) \to \mathcal{H}_1 \to (0).$$

