Compactness and weak-star continuity of derivations on weighted convolution algebras Banach Algebras 2011, Waterloo, Canada

Thomas Vils Pedersen
Department of Basic Sciences and Environment
University of Copenhagen
vils@life.ku.dk

Overview

- 1 Introduction
- Weak-star continuity A characterisation Sufficient conditions Counterexamples
- Compactness
 Necessary conditions
 Sufficient conditions

Motivation

- Traditionally the study of derivations from a Banach algebra to its Banach modules has mainly focused on the existence of such derivations.
- In some recent papers by Choi and Heath:
 - Characterise the derivations from a concrete Banach algebra to its dual space.
 - Use this characterisation to study properties of the derivations.
 - [Choi and Heath, 2010]: Weakly compact derivations from $l^1(\mathbb{Z}^+)$ to its dual space.
 - [Choi and Heath, 2011]: Compact derivations from the disc algebra to its dual space.
- We continue this line of thinking and consider properties of derivations from weighted convolution algebras $L^1(\omega)$ on \mathbb{R}^+ to their dual spaces.

Definitions

- Let ω be a continuous weight function on \mathbb{R}^+ , that is, a positive and continuous function on \mathbb{R}^+ satisfying $\omega(0)=1$ and $\omega(t+s)\leq \omega(t)\omega(s)$ for all $t,s\in\mathbb{R}^+$.
- With the usual convolution product the weighted space

$$L^{1}(\omega) = \{f : \mathbb{R}^{+} \to \mathbb{C} : \|f\| = \int_{0}^{\infty} |f(t)|\omega(t) dt < \infty\}$$

is a commutative Banach algebra.

• The space $M(\omega)$ of locally finite, complex Borel measures μ on \mathbb{R}^+ with

$$\|\mu\| = \int_0^\infty \omega(t) \, d|\mu|(t) < \infty$$

is also a Banach algebra under convolution. Moreover,

$$M(\omega) = \text{Mul}(L^1(\omega)).$$

Definitions – continued

Let

$$L^{\infty}(1/\omega) = \{ \varphi : \mathbb{R}^+ \to \mathbb{C} \ : \ \|\varphi\| = \operatorname{ess\,sup}_{t \in \mathbb{R}^+} |\varphi(t)|/\omega(t) < \infty \}.$$

Then

$$L^{\infty}(1/\omega) = L^{1}(\omega)^{*}.$$

• Subspaces of $L^{\infty}(1/\omega)$:

$$C_0(1/\omega) \le C_b(1/\omega) \le L^{\infty}(1/\omega).$$

We have

$$M(\omega) = C_0(1/\omega)^*.$$

• The dual space $L^{\infty}(1/\omega) = L^{1}(\omega)^{*}$ is a Banach $L^{1}(\omega)$ -module:

$$\langle f, g \cdot \varphi \rangle = \langle f * g, \varphi \rangle$$
 for $f, g \in L^1(\omega)$ and $\varphi \in L^\infty(1/\omega)$.

Derivations from $L^1(\omega)$ **to** $L^{\infty}(1/\omega)$

A linear map $D: L^1(\omega) \to L^{\infty}(1/\omega)$ is called a **derivation** if

$$D(f * g) = f \cdot Dg + g \cdot Df$$
 for $f, g \in L^{1}(\omega)$.

Theorem [Grønbæk, 1989] and [Bade and Dales, 1989]

• Let $\varphi \in L^{\infty}(1/\omega)$. Then

$$(D_{\varphi}f)(t) = \int_0^{\infty} f(s) \frac{s}{t+s} \varphi(t+s) \, ds \qquad \text{for } t \in \mathbb{R}^+ \text{ and } f \in L^1(\omega)$$

defines a continuous derivation $D_{\varphi}: L^{1}(\omega) \to L^{\infty}(1/\omega)$.

• D_{φ} has a unique extension to a continuous derivation $\overline{D}_{\varphi}: M(\omega) \to L^{\infty}(1/\omega)$ with

$$(\overline{D}_{\varphi}\delta_{s})(t) = \frac{s}{t+s}\varphi(t+s) \quad \text{for } t, s \in \mathbb{R}^{+}.$$

• Conversely, every continuous derivation from $L^1(\omega)$ to $L^{\infty}(1/\omega)$ equals D_{φ} for some $\varphi \in L^{\infty}(1/\omega)$.

Oversigt

- 1 Introduction
- Weak-star continuity A characterisation Sufficient conditions Counterexamples
- 3 Compactness

Weak-star continuity

Motivation

- [Grabiner, 1988 and 2010]: Every non-zero continuous homomorphism Φ : L¹(ω₁) → L¹(ω₂) has a unique extension to a continuous homomorphism Φ̄ : M(ω₁) → M(ω₂), and this extension is automatically weak-star continuous.
- [Pedersen, 2010]: Similar results for homomorphisms from $L^1(\omega)$ into some other commutative Banach algebras.

Weak-star continuity

Motivation

- [Grabiner, 1988 and 2010]: Every non-zero continuous homomorphism Φ : L¹(ω₁) → L¹(ω₂) has a unique extension to a continuous homomorphism Φ̄ : M(ω₁) → M(ω₂), and this extension is automatically weak-star continuous.
- [Pedersen, 2010]: Similar results for homomorphisms from $L^1(\omega)$ into some other commutative Banach algebras.

Question For which $\varphi \in L^{\infty}(1/\omega)$ is

$$\overline{D}_{\varphi}: M(\omega) \to L^{\infty}(1/\omega)$$

weak-star continuous?

Weak-star continuity

Motivation

- [Grabiner, 1988 and 2010]: Every non-zero continuous homomorphism Φ : L¹(ω₁) → L¹(ω₂) has a unique extension to a continuous homomorphism Φ̄ : M(ω₁) → M(ω₂), and this extension is automatically weak-star continuous.
- [Pedersen, 2010]: Similar results for homomorphisms from $L^1(\omega)$ into some other commutative Banach algebras.

Question For which $\varphi \in L^{\infty}(1/\omega)$ is

$$\overline{D}_{\varphi}: M(\omega) \to L^{\infty}(1/\omega)$$

weak-star continuous?

Idea If \overline{D}_{φ} is a adjoint operator, then it is weak-star continuous.

A characterisation

Definition

For $f \in L^1(\omega)$, $\varphi \in L^{\infty}(1/\omega)$ and $t \in \mathbb{R}^+$ we let

$$(T_{\varphi}f)(t) = \int_{0}^{\infty} f(s) \, \frac{t}{t+s} \, \varphi(t+s) \, ds = \langle f, \overline{D}_{\varphi} \delta_{t} \rangle.$$

Observation For $f, g \in L^1(\omega)$ and $\varphi \in L^\infty(1/\omega)$ we have

$$\langle f, D_{\varphi} g \rangle = \langle T_{\varphi} f, g \rangle$$

if $T_{\varphi}f \in C_0(1/\omega)$. (In general ran $T_{\varphi} \subseteq C_b(1/\omega)$.)

A characterisation

Definition

For $f \in L^1(\omega)$, $\varphi \in L^{\infty}(1/\omega)$ and $t \in \mathbb{R}^+$ we let

$$(T_{\varphi}f)(t) = \int_{0}^{\infty} f(s) \, \frac{t}{t+s} \, \varphi(t+s) \, ds = \langle f, \overline{D}_{\varphi} \delta_{t} \rangle.$$

Observation For $f, g \in L^1(\omega)$ and $\varphi \in L^\infty(1/\omega)$ we have

$$\langle f, D_{\varphi} g \rangle = \langle T_{\varphi} f, g \rangle$$

if $T_{\varphi}f \in C_0(1/\omega)$. (In general ran $T_{\varphi} \subseteq C_b(1/\omega)$.)

Proposition

For $\varphi \in L^{\infty}(1/\omega)$ the following conditions are equivalent:

- (a) \overline{D}_{φ} is weak-star continuous.
- (b) $\overline{D}_{\omega}\delta_t/\omega(t) \to 0$ weak-star in $L^{\infty}(1/\omega)$ as $t \to \infty$.
- (c) ran $T_{\varphi} \subseteq C_0(1/\omega)$.
- (d) ran $T_{\varphi} \subseteq C_0(1/\omega)$ and $T_{\varphi}^* = \overline{D}_{\varphi}$.

A characterisation - continued

Heuristically we can think of $\overline{D}_{\varphi}\mu$ as

$$(\overline{D}_{\varphi}\mu)(t) = \int_{0}^{\infty} \frac{s}{t+s} \varphi(t+s) \, d\mu(s) = \int_{0}^{\infty} (\overline{D}_{\varphi}\delta_{s})(t) \, d\mu(s),$$

although the integrals need not be defined.

Corollary

Under the equivalent conditions in the proposition we have

$$\overline{D}_{\varphi}\mu = \int_{0}^{\infty} \overline{D}_{\varphi} \delta_{s} \, d\mu(s)$$

as a weak-star Bochner integral in $L^{\infty}(1/\omega)$ for $\mu \in M(\omega)$, that is,

$$\langle f, \overline{D}_{\varphi} \mu \rangle = \int_{0}^{\infty} \langle f, \overline{D}_{\varphi} \delta_{s} \rangle \, d\mu(s)$$

for $f \in L^1(\omega)$ and $\mu \in M(\omega)$.

Aim Find conditions on φ which ensure weak-star continuity of \overline{D}_{φ} .

Definition

For $\varphi \in L^{\infty}(1/\omega)$ and $t, \varepsilon \in \mathbb{R}^+$ we let

$$U_{t,\varepsilon} = \{ s \in [t, t+1] : |\varphi(s)|/\omega(s) \ge \varepsilon \}.$$

Aim Find conditions on φ which ensure weak-star continuity of \overline{D}_{φ} .

Definition

For $\varphi \in L^{\infty}(1/\omega)$ and $t, \varepsilon \in \mathbb{R}^+$ we let

$$U_{t,\varepsilon} = \{ s \in [t, t+1] : |\varphi(s)|/\omega(s) \ge \varepsilon \}.$$

Theorem

Let $\varphi \in L^{\infty}(1/\omega)$ and assume that

$$m(U_{t,\varepsilon}) \to 0$$
 as $t \to \infty$ for every $\varepsilon > 0$.

Then \overline{D}_{φ} is weak-star continuous and $\overline{D}_{\varphi}=T_{\varphi}^*$.

Aim Find conditions on φ which ensure weak-star continuity of \overline{D}_{φ} .

Definition

For $\varphi \in L^{\infty}(1/\omega)$ and $t, \varepsilon \in \mathbb{R}^+$ we let

$$U_{t,\varepsilon} = \{ s \in [t, t+1] : |\varphi(s)|/\omega(s) \ge \varepsilon \}.$$

Theorem

Let $\varphi \in L^{\infty}(1/\omega)$ and assume that

$$m(U_{t,\varepsilon}) \to 0$$
 as $t \to \infty$ for every $\varepsilon > 0$.

Then \overline{D}_{φ} is weak-star continuous and $\overline{D}_{\varphi}=T_{\varphi}^*$.

Idea in the proof Since φ/ω is not bounded away from zero on large sets, the definition of $T_{\varphi}f$ can be used to show that $T_{\varphi}f \in C_0(1/\omega)$ for $f \in L^1(\omega)$.

Aim Find conditions on φ which ensure weak-star continuity of \overline{D}_{φ} .

Definition

For $\varphi \in L^{\infty}(1/\omega)$ and $t, \varepsilon \in \mathbb{R}^+$ we let

$$U_{t,\varepsilon} = \{ s \in [t, t+1] : |\varphi(s)|/\omega(s) \ge \varepsilon \}.$$

Theorem

Let $\varphi \in L^{\infty}(1/\omega)$ and assume that

$$m(U_{t,\varepsilon}) \to 0$$
 as $t \to \infty$ for every $\varepsilon > 0$.

Then \overline{D}_{φ} is weak-star continuous and $\overline{D}_{\varphi} = T_{\varphi}^*$.

Idea in the proof Since φ/ω is not bounded away from zero on large sets, the definition of $T_{\omega}f$ can be used to show that $T_{\omega}f \in C_0(1/\omega)$ for $f \in L^1(\omega)$.

Question Is the condition in the theorem also necessary?

Sufficient conditions – continued

Corollary

Let $\varphi \in L^{\infty}(1/\omega)$ and assume that $\varphi(t)/\omega(t) \to 0$ as $t \to \infty$.

Then \overline{D}_{φ} is weak-star continuous and $\overline{D}_{\varphi}=T_{\varphi}^*.$

Sufficient conditions - continued

Corollary

Let $\varphi \in L^{\infty}(1/\omega)$ and assume that $\varphi(t)/\omega(t) \to 0$ as $t \to \infty$.

Then \overline{D}_{φ} is weak-star continuous and $\overline{D}_{\varphi}=T_{\varphi}^*.$

Corollary

- Let (α_n) be a sequence with $0 < \alpha_n < 1 \ (n \in \mathbb{N})$ and $\alpha_n \to 0$ as $n \to \infty$.
- Let $\varphi = \sum_{n=1}^{\infty} \mathbf{1}_{[n,n+\alpha_n]} \cdot \omega \in L^{\infty}(1/\omega)$.

Then \overline{D}_{φ} is weak-star continuous (but we do not have $\varphi(t)/\omega(t) \to 0$ as $t \to \infty$).

Counterexamples

Proposition

- Suppose $\exists C > 0$ such that $\int_{x}^{x+1} \omega(y) \, dy \ge C\omega(x)$ for all $x \in \mathbb{R}^{+}$.
- Let (a_n) be a sequence in \mathbb{R}^+ with $a_0 \ge 1$ and $a_{n+1} \ge a_n + 1$ for $n \in \mathbb{N}$.
- Let $\varphi = \sum_{n=1}^{\infty} \mathbf{1}_{[a_n, a_n+1]} \cdot \omega \in L^{\infty}(1/\omega)$.

Then \overline{D}_{φ} is not weak-star continuous.

In particular \overline{D}_{ω} is not weak-star continuous.

Counterexamples

Proposition

- Suppose $\exists C > 0$ such that $\int_{x}^{x+1} \omega(y) \, dy \ge C\omega(x)$ for all $x \in \mathbb{R}^{+}$.
- Let (a_n) be a sequence in \mathbb{R}^+ with $a_0 \ge 1$ and $a_{n+1} \ge a_n + 1$ for $n \in \mathbb{N}$.
- Let $\varphi = \sum_{n=1}^{\infty} \mathbf{1}_{[a_n, a_n+1]} \cdot \omega \in L^{\infty}(1/\omega)$.

Then \overline{D}_{φ} is not weak-star continuous.

In particular \overline{D}_{ω} is not weak-star continuous.

Idea in the proof

$$\frac{\delta_{a_n}}{\omega(a_n)} \to 0 \qquad \text{weak-star in } M(\omega)$$

whereas

$$\overline{D}_{\varphi}\left(\frac{\delta_{a_n}}{\omega(a_n)}\right)$$
 does not tend to 0 weak-star in $L^{\infty}(1/\omega)$

as $n \to \infty$.

Oversigt

- Introduction
- Weak-star continuity
- Compactness
 Necessary conditions
 Sufficient conditions

Compactness

Motivation [Choi and Heath, 2010 and 2011].

Questions

• For which $\varphi \in L^{\infty}(1/\omega)$ are

$$D_{\varphi}: L^{1}(\omega) \to L^{\infty}(1/\omega)$$

and

$$\overline{D}_{\varphi}: M(\omega) \to L^{\infty}(1/\omega)$$

compact?

Compactness

Motivation [Choi and Heath, 2010 and 2011].

Questions

• For which $\varphi \in L^{\infty}(1/\omega)$ are

$$D_{\varphi}: L^{1}(\omega) \to L^{\infty}(1/\omega)$$

and

$$\overline{D}_{\varphi}: M(\omega) \to L^{\infty}(1/\omega)$$

compact?

Do we have

$$D_{\varphi}$$
 compact \Rightarrow \overline{D}_{φ} compact?

Proposition

Let $\varphi \in L^{\infty}(1/\omega)$ and assume that \overline{D}_{φ} is compact. Then $\varphi(s) \to 0$ as $s \to 0$.

Proposition

Let $\varphi \in L^{\infty}(1/\omega)$ and assume that \overline{D}_{φ} is compact. Then $\varphi(s) \to 0$ as $s \to 0$.

Theorem

Let $\varphi \in L^{\infty}(1/\omega)$ be real-valued. Assume that there exists $t_0 > 0$ such that

$$\lim_{t \to (t_0)_-} \varphi(t) \qquad \text{and} \qquad \lim_{t \to (t_0)_+} \varphi(t)$$

exist and are different. Then D_{φ} and \overline{D}_{φ} are not compact.

(A slightly stronger result can actually be proved.)

Proposition

Let $\varphi \in L^{\infty}(1/\omega)$ and assume that \overline{D}_{φ} is compact. Then $\varphi(s) \to 0$ as $s \to 0$.

Theorem

Let $\varphi \in L^{\infty}(1/\omega)$ be real-valued. Assume that there exists $t_0 > 0$ such that

$$\lim_{t \to (t_0)_-} \varphi(t) \quad \text{and} \quad \lim_{t \to (t_0)_+} \varphi(t)$$

exist and are different. Then D_{φ} and \overline{D}_{φ} are not compact.

(A slightly stronger result can actually be proved.)

Idea in the proof $\overline{D}_{\varphi}\delta_t$ does not have a norm cluster point as $t \to (t_0)_-$.

Proposition

Let $\varphi \in L^{\infty}(1/\omega)$ and assume that \overline{D}_{φ} is compact. Then $\varphi(s) \to 0$ as $s \to 0$.

Theorem

Let $\varphi \in L^{\infty}(1/\omega)$ be real-valued. Assume that there exists $t_0 > 0$ such that

$$\lim_{t \to (t_0)_-} \varphi(t) \qquad \text{and} \qquad \lim_{t \to (t_0)_+} \varphi(t)$$

exist and are different. Then D_{φ} and \overline{D}_{φ} are not compact.

(A slightly stronger result can actually be proved.)

Idea in the proof $\overline{D}_{\varphi}\delta_t$ does not have a norm cluster point as $t \to (t_0)_-$.

Remark Because of these results, we will focus on $\varphi \in C_b(1/\omega)$ with $\varphi(0) = 0$.

Theorem

Let $\varphi \in C_0(1/\omega)$. Then \overline{D}_{φ} is compact if and only if $\varphi(0) = 0$.

Theorem

Let $\varphi \in C_0(1/\omega)$. Then \overline{D}_{φ} is compact if and only if $\varphi(0) = 0$.

Ideas in the proof

•

$$(\overline{D}_{\varphi}\mu)(t)=\langle \psi_t,\mu\rangle \qquad \text{for } \mu\in M(\omega) \text{ and } t\in\mathbb{R}^+,$$
 where $\psi_t\in C_0(1/\omega)$ is given by

$$\psi_t(s) = \frac{s}{t+s} \varphi(t+s)$$
 for $t, s \in \mathbb{R}^+$.

• $\{\psi_t/\omega(t): t \in \mathbb{R}^+\}$ is totally bounded in $C_0(1/\omega)$.

Theorem

Let $\varphi \in C_0(1/\omega)$. Then \overline{D}_{φ} is compact if and only if $\varphi(0) = 0$.

Ideas in the proof

$$(\overline{D}_{\varphi}\mu)(t)=\langle \psi_t,\mu
angle \qquad ext{for }\mu\in M(\omega) ext{ and } t\in\mathbb{R}^+,$$
 where $\psi_t\in C_0(1/\omega)$ is given by

$$\psi_t(s) = \frac{s}{t+s} \varphi(t+s)$$
 for $t, s \in \mathbb{R}^+$.

• $\{\psi_t/\omega(t): t \in \mathbb{R}^+\}$ is totally bounded in $C_0(1/\omega)$.

Question Is it necessary to have $\varphi \in C_0(1/\omega)$?

Answer

- No, for the compactness of D_{ω} (see below).
- We do not know for \overline{D}_{ω} .

Sufficient conditions – continued

Proposition

Let $\varphi \in C_b(1/\omega)$. Assume that $\varphi(0)=0$ and that $\overline{D}_{\varphi}\delta_s/\omega(s)$ has a limit in $L^{\infty}(1/\omega)$ as $s \to \infty$. Then D_{φ} is compact.

Sufficient conditions – continued

Proposition

Let $\varphi \in C_b(1/\omega)$. Assume that $\varphi(0) = 0$ and that $\overline{D}_{\varphi} \delta_s/\omega(s)$ has a limit in $L^{\infty}(1/\omega)$ as $s \to \infty$. Then D_{φ} is compact.

Ideas in the proof

•

$$D_{\varphi}f = \int_{0}^{\infty} f(s)\omega(s) \frac{\overline{D}_{\varphi}\delta_{s}}{\omega(s)} ds$$

exists as a Bochner integral.

- $\{\overline{D}_{\varphi}\delta_s/\omega(s):s\in\mathbb{R}^+\}$ is pre-compact in $C_0(1/\omega)$.
- · Use a standard result about Bochner integrals.

Sufficient conditions - continued

Proposition

Let $\varphi \in C_b(1/\omega)$. Assume that $\varphi(0) = 0$ and that $\overline{D}_{\varphi} \delta_s/\omega(s)$ has a limit in $L^{\infty}(1/\omega)$ as $s \to \infty$. Then D_{φ} is compact.

Ideas in the proof

$$D_{\varphi}f = \int_{0}^{\infty} f(s)\omega(s) \frac{\overline{D}_{\varphi}\delta_{s}}{\omega(s)} ds$$

exists as a Bochner integral.

- $\{\overline{D}_{\varphi}\delta_s/\omega(s): s \in \mathbb{R}^+\}$ is pre-compact in $C_0(1/\omega)$.
- · Use a standard result about Bochner integrals.

Question Is \overline{D}_{φ} compact under the assumptions in the proposition?

Sufficient conditions – continued

Proposition

Assume that $\omega(s) \ge 1$ for every $s \in \mathbb{R}^+$, $\omega(s) \to \infty$ as $s \to \infty$ and

$$\sup_{t\in\mathbb{R}^+}\frac{|\omega(t+s)-\omega(s)|}{\omega(t)\omega(s)}\to 0\qquad\text{as }s\to\infty.$$

Let $\varphi = \omega - 1$.

Then D_{φ} is compact, whereas $\varphi \notin C_0(1/\omega)$.

Sufficient conditions - continued

Proposition

Assume that $\omega(s) \ge 1$ for every $s \in \mathbb{R}^+$, $\omega(s) \to \infty$ as $s \to \infty$ and

$$\sup_{t\in\mathbb{R}^+}\frac{|\omega(t+s)-\omega(s)|}{\omega(t)\omega(s)}\to 0\qquad\text{as }s\to\infty.$$

Let $\varphi = \omega - 1$.

Then D_{φ} is compact, whereas $\varphi \notin C_0(1/\omega)$.

Idea in the proof $\overline{D}_{\omega}\delta_s/\omega(s) \to 1$ in $L^{\infty}(1/\omega)$ as $s \to \infty$.

Sufficient conditions - continued

Proposition

Assume that $\omega(s) \ge 1$ for every $s \in \mathbb{R}^+$, $\omega(s) \to \infty$ as $s \to \infty$ and

$$\sup_{t\in\mathbb{R}^+}\frac{|\omega(t+s)-\omega(s)|}{\omega(t)\omega(s)}\to 0\qquad\text{as }s\to\infty.$$

Let $\varphi = \omega - 1$.

Then D_{φ} is compact, whereas $\varphi \notin C_0(1/\omega)$.

Idea in the proof $\overline{D}_{\varphi}\delta_s/\omega(s) \to 1$ in $L^{\infty}(1/\omega)$ as $s \to \infty$.

Corollary

Let $\alpha > 0$, $\omega(t) = (1+t)^{\alpha}$ $(t \in \mathbb{R}^+)$ and let $\varphi = \omega - 1$.

Then D_{φ} is compact, whereas $\varphi \notin C_0(1/\omega)$.

Sufficient conditions – continued

The condition $\varphi(t)/\omega(t) \to 0$ as $t \to \infty$ in the theorem cannot in general be relaxed to $\varphi(t)/\omega(t) \to \alpha$ as $t \to \infty$ for some $\alpha \in \mathbb{C}$:

Proposition

Let $\varphi \in L^{\infty}(\mathbb{R}^+)$ and assume that $\varphi(t) \to \alpha$ as $t \to \infty$ for some $\alpha \neq 0$. Then $D_{\varphi} : L^1(\mathbb{R}^+) \to L^{\infty}(\mathbb{R}^+)$ and $\overline{D}_{\varphi} : M(\mathbb{R}^+) \to L^{\infty}(\mathbb{R}^+)$ are not compact.

Sufficient conditions – continued

The condition $\varphi(t)/\omega(t) \to 0$ as $t \to \infty$ in the theorem cannot in general be relaxed to $\varphi(t)/\omega(t) \to \alpha$ as $t \to \infty$ for some $\alpha \in \mathbb{C}$:

Proposition

Let $\varphi \in L^{\infty}(\mathbb{R}^+)$ and assume that $\varphi(t) \to \alpha$ as $t \to \infty$ for some $\alpha \neq 0$. Then $D_{\varphi} : L^1(\mathbb{R}^+) \to L^{\infty}(\mathbb{R}^+)$ and $\overline{D}_{\varphi} : M(\mathbb{R}^+) \to L^{\infty}(\mathbb{R}^+)$ are not compact.

Idea in the proof $\overline{D}_{\varphi}\delta_n \to \alpha$ weak-star in $L^{\infty}(\mathbb{R}^+)$, but $\|\overline{D}_{\varphi}\delta_n - \alpha\| \to |\alpha|$ as $n \to \infty$.