On the Multiplier algebra of some Topological Algebras

Lourdes Palacios

Universidad Autónoma Metropolitana Iztapalapa

Joint work with Marina Haralampidou (University of Athens) and Carlos Signoret (UAM-I)

Banach Algebras 2011

Waterloo, August 2011

Definitions

• The **right (left) annihilator** of an algebra A is defined as $A_r(A) = \{x \in A : Ax = 0\}$ ($A_I(A) = \{x \in A : xA = 0\}$). Note that these sets are in fact two-sided ideals of A.

- **1** The **right (left) annihilator** of an algebra A is defined as $A_r(A) = \{x \in A : Ax = 0\}$ ($A_l(A) = \{x \in A : xA = 0\}$). Note that these sets are in fact two-sided ideals of A.
- ② An algebra A is called **preannihilator** if $A_r(A) = A_l(A) = 0$.

- **1** The **right (left) annihilator** of an algebra A is defined as $A_r(A) = \{x \in A : Ax = 0\}$ ($A_I(A) = \{x \in A : xA = 0\}$). Note that these sets are in fact two-sided ideals of A.
- ② An algebra A is called **preannihilator** if $A_r(A) = A_l(A) = 0$.
- **3** A is called **proper** if $A_r(A) = 0$.

- **1** The **right (left) annihilator** of an algebra A is defined as $A_r(A) = \{x \in A : Ax = 0\}$ ($A_I(A) = \{x \in A : xA = 0\}$). Note that these sets are in fact two-sided ideals of A.
- ② An algebra A is called **preannihilator** if $A_r(A) = A_l(A) = 0$.
- **3** A is called **proper** if $A_r(A) = 0$.
- **4** A right (left) ideal I of A is **essential** if $I \cap J \neq 0$ for each non-zero right (left) ideal of A.

- The **right (left) annihilator** of an algebra A is defined as $A_r(A) = \{x \in A : Ax = 0\}$ ($A_l(A) = \{x \in A : xA = 0\}$). Note that these sets are in fact two-sided ideals of A.
- ② An algebra A is called **preannihilator** if $A_r(A) = A_l(A) = 0$.
- **3** A is called **proper** if $A_r(A) = 0$.
- **3** A right (left) ideal I of A is **essential** if $I \cap J \neq 0$ for each non-zero right (left) ideal of A.
- **1** The **right (left) socle** of A is the sum of all minimal right (left) ideals in A, and it is denoted by $\mathfrak{S}_r(A)$ ($\mathfrak{S}_l(A)$).

- **1** The **right (left) annihilator** of an algebra A is defined as $A_r(A) = \{x \in A : Ax = 0\}$ ($A_l(A) = \{x \in A : xA = 0\}$). Note that these sets are in fact two-sided ideals of A.
- ② An algebra A is called **preannihilator** if $A_r(A) = A_l(A) = 0$.
- **3** A is called **proper** if $A_r(A) = 0$.
- **3** A right (left) ideal I of A is **essential** if $I \cap J \neq 0$ for each non-zero right (left) ideal of A.
- **1** The **right (left) socle** of A is the sum of all minimal right (left) ideals in A, and it is denoted by $\mathfrak{S}_r(A)$ ($\mathfrak{S}_I(A)$).
- If $\mathfrak{S}_r(A)$, $\mathfrak{S}_l(A)$ exist and $\mathfrak{S}_r(A) = \mathfrak{S}_l(A)$, then the resulting two-sided ideal is called the **socle** of A and it is denoted by $\mathfrak{S}(A)$.

Definition

Let A be an algebra.

7. A **left (right) multiplier** on A is a linear mapping $T: A \to A$ such that T(xy) = T(x)y (= xT(y)) for all $x, y \in A$.

Definition

Let A be an algebra.

- 7. A **left (right) multiplier** on A is a linear mapping $T: A \to A$ such that T(xy) = T(x)y (= xT(y)) for all $x, y \in A$.
- 8. T is called a **two-sided multiplier** (or simply, a **multiplier**) on A if it is a left and a right multiplier.

We will denote by $\mathcal{M}_{I}(A)$ ($\mathcal{M}_{r}(A)$) the set of all left (right) multipliers on A and by $\mathcal{M}(A)$ the set of all multipliers on A. Note that $\mathcal{M}(A) = \mathcal{M}_{I}(A) \cap \mathcal{M}_{r}(A)$.

We will denote by $\mathcal{L}(A)$ the algebra of all linear operators on A.

Remark. $\mathcal{M}(A)$ is a subalgebra of $\mathcal{L}(A)$. The same holds for $\mathcal{M}_{I}(A)$ and $\mathcal{M}_{r}(A)$.

Let $x \in A$; the function I_x given by

$$I_X(y) = xy$$
, $x \in A$

is an operator on A.

Due to the associativity of multiplication on A, I_x is a left multiplier. We can define r_x , the right multiplier associated to x, in a similar way.

Theorem

Let A be a preannihilator algebra. Then:

The mapping

$$L: A \to \mathcal{M}_I(A)$$
$$x \longmapsto I_X$$

defines an algebra monomorphism which identifies A with a subalgebra of $\mathcal{M}_{l}(A)$.

Theorem

Let A be a preannihilator algebra. Then:

The mapping

$$L: A \to \mathcal{M}_I(A)$$
$$x \longmapsto I_x$$

defines an algebra monomorphism which identifies A with a subalgebra of $\mathcal{M}_1(A)$.

② A is a left ideal of the algebra $\mathcal{M}_I(A)$.

Theorem

Let A be a preannihilator algebra. Then:

The mapping

$$L: A \to \mathcal{M}_I(A)$$
$$x \longmapsto I_x$$

defines an algebra monomorphism which identifies A with a subalgebra of $\mathcal{M}_I(A)$.

- ② A is a left ideal of the algebra $\mathcal{M}_I(A)$.
- **1** If B is a subalgebra of $\mathcal{M}_I(A)$ such that $A \subseteq B$, then $I \cap A \neq (0)$ for each non-zero right ideal I of B.

Proof.

- (1) Since the left multiplication satisfies the relations $I_{(x+\lambda y)} = I_x + \lambda I_y$ and $I_{xy} = I_x \circ I_y$ for every $x, y \in A$ and $\lambda \in \mathbb{C}$, we get that L is a homomorphism.
- If L(x)=0, then $l_x(y)=0$ for all $y\in A$. Namely, xy=0 for all $y\in A$. By hypothesis, x=0 and L is finally a monomorphism.
- (2) Under the identification $x \equiv I_x$, we only have to show that A absorbs multiplication on the left: If $x \in A$ and $T \in \mathcal{M}_I(A)$, then, for each $y \in A$, we have $TI_x(y) = T(xy) = T(x)y = I_{T(x)}$ and therefore $TI_x = I_{T(x)}$. \square

Proof.

[Proof (Cont.)] Let us suppose that $A \cap I = 0$. On one hand, since A is a left ideal in $\mathcal{M}_I(A)$, we have $IA \subseteq BA \subseteq \mathcal{M}_I(A)A \subseteq A$.

On the other hand, since I is a right ideal in B, we have $IA \subseteq IB \subseteq I$. Therefore $IA \subseteq A \cap I = 0$.

Now, if $T \in I$ and $x, y \in A$, we have $0 = (T \circ I_x)(y) = T(I_x(y)) = T(xy) = T(x)y$, that is, T(x)A = 0, which implies that T(x) = 0. Then I = 0.

Corollary

Every preannihilator algebra A is an essential two-sided ideal in its multiplier algebra $\mathcal{M}(A)$.

Corollary

Let A be a preannihilator algebra. If B is a subalgebra of $\mathcal{M}_{I}(A)$ which contains A, then $\mathfrak{S}_{I}(A)$ is a left ideal of B and $\mathfrak{S}_{I}(A) \subseteq \mathfrak{S}_{I}(B)$.

Proof.

(Second Corollary): Clearly A is a left ideal in B.

It is known that $Soc_l(A) = Soc_l(B) \cap A$; therefore $Soc_l(A) \subseteq Soc_l(B)$ and $B \ (Soc_l(A)) = B \ (Soc(B) \cap A) \subseteq B \ Soc(B) \cap B \ A \subseteq Soc(B) \cap A = Soc(A)$ so that $Soc_l(A)$ is a left ideal in B.

Definitions

A topological algebra over C is an associative algebra which is a topological linear space and the ring multiplication is separately continuous.

Definitions

- A topological algebra over C is an associative algebra which is a topological linear space and the ring multiplication is separately continuous.
- ② A **locally convex algebra** is a topological algebra A which is a locally convex space. In this case its topology can be given by a family $\{p_{\alpha}: \alpha \in \Lambda\}$ of seminorms such that for each $\alpha \in \Lambda$ there exists $\beta \in \Lambda$ such that (1) $p_{\alpha}(xy) \leq p_{\beta}(x)p_{\beta}(y)$

for all $x, y \in A$.

- ◆ A topological algebra over C is an associative algebra which is a topological linear space and the ring multiplication is separately continuous.
- ② A **locally convex algebra** is a topological algebra A which is a locally convex space. In this case its topology can be given by a family $\{p_{\alpha}: \alpha \in \Lambda\}$ of seminorms such that for each $\alpha \in \Lambda$ there exists $\beta \in \Lambda$ such that (1) $p_{\alpha}(xy) \leq p_{\beta}(x)p_{\beta}(y)$ for all $x, y \in A$.
- A locally convex algebra is said to be multiplicatively convex (shortly m-convex) if every seminorm is submultiplicative i.e. (1) can be replaced by
 - (2) $p_{\alpha}(xy) \leq p_{\alpha}(x)p_{\alpha}(y)$ for each $\alpha \in \Lambda$ and all $x, y \in A$.

The Arens-Michael Decomposition.

Let $(A, (p_{\alpha})_{\alpha \in \Lambda})$ be a complete locally *m*-convex algebra and let

$$ho_{lpha}:A o A/\ker p_{lpha}\doteq A_{lpha} \ x\longmapsto
ho_{lpha}(x)=x+\ker p_{lpha}\doteq x_{lpha}, \qquad lpha\in \Lambda$$

be the respective quotient maps.

Then $\|x_{\alpha}\|_{\alpha} \doteq p_{\alpha}(x)$, $x \in A$ and $\alpha \in \Lambda$, defines a norm on A_{α} , so that A_{α} is a normed algebra and the morphisms ρ_{α} , $\alpha \in \Lambda$ are continuous.

Let \widetilde{A}_{α} , $\alpha \in \Lambda$, denote the completion of A_{α} with respect to $\|\cdot\|_{\alpha}$.

The Arens-Michael Decomposition.

 Λ is endowed with a partial ordering by putting $\alpha \leq \beta$ if $p_{\alpha}(x) \leq p_{\beta}(x)$ for all $x \in A$.

Thus, $\ker p_{eta} \subseteq \ker p_{lpha}$ and hence the continuous onto morphism

$$f_{\alpha\beta}: A_{eta} o A_{lpha} \ x_{eta} \longmapsto f_{lphaeta}(x_{eta}) \doteq x_{lpha} \qquad (lpha \preceq eta)$$

is defined.

Moreover, $f_{\alpha\beta}$ extends to a continuous morphism

$$\widetilde{f}_{\alpha\beta}:\widetilde{A_{\beta}}\to\widetilde{A_{\alpha}}$$

Thus, $(A_{\alpha}, f_{\alpha\beta})$ (respectively $(\widetilde{A_{\alpha}}, \widetilde{f_{\alpha\beta}})$), $\alpha, \beta \in \Lambda$ with $\alpha \leq \beta$, are projective systems of normed algebras (respectively, Banach algebras) so that:

$$A\cong arprojlim A_{lpha}\cong arprojlim \widetilde{A_{lpha}}$$
 (Arens-Michael decomposition)

within topological algebra isomorphisms.

Note that the projective limit algebra $\varprojlim A_{\alpha}$ can be realized as a subalgebra of the direct product $\prod_{\alpha \in \Lambda} \widetilde{A_{\alpha}}$ and therefore the canonical maps $\widetilde{\pi_{\beta}}: \prod_{\alpha \in \Lambda} \widetilde{A_{\alpha}} \longrightarrow \widetilde{A_{\beta}}$ (for $\beta \in \Lambda$) can be restricted to $\varprojlim \widetilde{A_{\alpha}}$.

$$\widetilde{\Pi}_{lpha \in \Lambda} \stackrel{\widetilde{A}_{lpha}}{A_{lpha}} \stackrel{\widetilde{A}_{eta}}{\longrightarrow} \stackrel{\widetilde{A}_{eta}}{A_{eta}} \ (ext{for } eta \in \Lambda) \ ext{can be rest}$$

$$A \cong \varprojlim_{\widetilde{A}_{lpha}} \stackrel{\widetilde{A}_{lpha}}{A_{lpha}} \\
\widetilde{A_{eta}} \stackrel{\widetilde{\pi_{lpha}}|}{\longleftarrow} \stackrel{\widetilde{\pi_{lpha}}|}{\longleftarrow} \stackrel{\widetilde{\pi_{lpha}}|}{\longleftarrow} \stackrel{\widetilde{\pi_{lpha}}|}{\longleftarrow}$$

$$\widetilde{f}_{lpha,eta}$$

Definition

A projective system $\{(A_{\alpha}, f_{\alpha\beta})_{\alpha,\beta\in\Lambda}\}$ of topological algebras is called **perfect**, if the restrictions to the projective limit algebra

$$A = \varprojlim A_{\alpha} = \{(x_{\alpha}) \in \prod_{\alpha \in \Lambda} A_{\alpha} : f_{\alpha\beta}(x_{\beta}) = x_{\alpha}, \ \alpha \leq \beta \text{ in } \Lambda\}$$

of the canonical projections $\pi_{\alpha}: \prod_{\alpha \in \Lambda} A_{\alpha} \longrightarrow A_{\alpha}$, $\alpha \in \Lambda$, namely, the (continuous algebra) morphisms

$$f_{\alpha}=\pi_{\alpha}\mid_{A=\lim A_{\alpha}}:A\longrightarrow A_{\alpha},\ \alpha\in\Lambda,$$

are onto maps.

The resulting projective limit algebra $A = \varprojlim A_{\alpha}$ is called a **perfect** (topological) algebra [Haralampidou, 2003].

Multipliers in m-convex algebras

Our results

Definition

An approximate identity on a topological algebra A is a net $\{e_{\delta}\}_{\delta\in\Delta}$ in A such that

$$xe_{\delta} \xrightarrow{\delta} x$$
 and $e_{\delta}x \xrightarrow{\delta} x$

for each $x \in A$.

Theorem

Let $(A,(p_{\alpha})_{\alpha\in\Lambda})$ be a complete locally m-convex algebra with an approximate identity $\{e_{\delta}\}_{\delta\in\Delta}$. Suppose that each factor $A_{\alpha}=A/\ker p_{\alpha}$ in the Arens-Michael decomposition of A is complete. Then each (two-sided) multiplier T of A is continuous, i.e., $\mathcal{M}(A)$ is a subalgebra of $\mathcal{L}(A)$.

Proof.

Let T be an element in $\mathcal{M}(A)$, and $\alpha \in \Lambda$. Take $x \in \ker p_a$. For $\varepsilon > 0$, there exists an index $\delta_0 \in \Delta$ such that $p_{\alpha}(T(x) - T(x)e_{\delta}) < \varepsilon$ whenever $\delta \geq \delta_0$.

We have:
$$p_{\alpha}(T(x)) = p_{\alpha}(T(x - xe_{\delta_0} + xe_{\delta_0}))$$

 $= p_{\alpha}(T(x) - T(xe_{\delta_0}) + T(xe_{\delta_0})) \le$
 $\le p_{\alpha}(T(x) - T(xe_{\delta_0})) + p_{\alpha}(T(xe_{\delta_0}))$
 $= p_{\alpha}(T(x) - T(x)e_{\delta_0}) + p_{\alpha}(xT(e_{\delta_0})) \le$
 $\le p_{\alpha}(T(x) - T(x)e_{\delta_0}) + p_{\alpha}(x)p_{\alpha}(T(e_{\delta_0})) < \varepsilon$.
Since this is true for an arbitrary $\varepsilon > 0$, we conclude

Since this is true for an arbitrary $\varepsilon > 0$, we conclude that $p_{\alpha}(T(x)) = 0$, that is, $T(x) \in \ker p_{\alpha}$.

Then the initial multiplier $T:A\to A$ has projections $T_\alpha:A_\alpha\to A_\alpha$, where $T_\alpha(x+\ker p_\alpha)=T(x)+\ker p_\alpha$, multipliers of the proper normed algebras A_α , which by hypothesis, are Banach algebras for every $\alpha\in\Lambda$.

Proof (cont.)

By definition we have $T_{\alpha} \circ \rho_{\alpha} = \rho_{\alpha} \circ T$, where $\rho_{\alpha} : A \to A_{\alpha}$, $\alpha \in \Lambda$, are the canonical quotient maps. Moreover, $f_{\alpha\beta} \circ T_{\beta} = T_{\alpha} \circ f_{\alpha\beta}$ for all $\alpha \leq \beta$ in Λ . Here $f_{\alpha\beta}$ ($\alpha \leq \beta$) denote the connecting maps of the projective system. Namely, $(T_{\alpha})_{\alpha \in \Lambda}$ is a projective system of maps with respect to $\{(A_{\alpha}, f_{\alpha\beta}), \alpha \leq \beta\}$ in Λ , so that $T = \varprojlim T_{\alpha}$.

Denote by f_{α} the restrictions of $\pi_{\alpha}: \prod_{\alpha \in \Lambda} A_{\alpha} \to A_{\alpha}$ to the projective limit $\varprojlim A_{\alpha}$. Since $f_{\alpha} \circ \varphi = \rho_{\alpha}$, where φ is the topological algebra isomorphism identifying A with $\varprojlim A_{\alpha}$, we set $f_{\alpha} = \rho_{\alpha}$.

Since multipliers on proper Banach algebras are bounded (equivalently continuous), T_{α} is continuous on A_{α} . Therefore $T_{\alpha} \circ f_{\alpha}$ is continuous, as well. Since $T_{\alpha} \circ f_{\alpha} = f_{\alpha} \circ T$ for all $\alpha \in \Lambda$, T is continuous.

Definitions

1 A seminorm p on the *-algebra satisfies the C^* -condition (or it is a C^* -seminorm) if $p(x^*x) = p(x)^2$ for each $x \in A$.

It is known that such a seminorm must be submultiplicative and *-preserving.

Definitions

1 A seminorm p on the *-algebra satisfies the C^* -condition (or it is a C^* -seminorm) if $p(x^*x) = p(x)^2$ for each $x \in A$.

It is known that such a seminorm must be submultiplicative and *-preserving.

2 A locally C^* -algebra is a complete, locally m-convex, * -algebra $(A, (p_{\alpha})_{\alpha \in \Lambda})$ such that each p_{α} $(\alpha \in \Lambda)$ is a C^* -seminorm.

Multipliers in m-convex algebras

Our results

Corollary

Let A be a locally C^* -algebra. Then the algebra of multipliers of A is a subalgebra of the algebra of continuous linear operators on A.

Some Results.

Suppose $(A, \{q_{\alpha} : \alpha \in \Lambda\})$ is a locally C^* -algebra. Then [Joiţa, 2005] $\mathcal{M}_{I}(A)$ becomes a locally convex algebra with respect to the family of seminorms $\{\widetilde{q}_{\alpha} : \alpha \in \Lambda\}$ defined as follows: for $T_{I} \in \mathcal{M}_{I}(A)$,

$$\widetilde{q}_{lpha}(T_I) = \sup\{q_{lpha}(T_I(x)), \, x \in A \, \text{ and } \, q_{lpha}(x) \leq 1\}.$$

Theorem (Joiţa, 2005)

Let A be a locally C*-algebra. Then we have:

- **1** $\mathcal{M}_I(A)$ is a complete locally m-convex algebra.
- ② If $A = \varprojlim A_{\alpha}$ and the canonical maps $g_{\alpha} : A \to A_{\alpha}$ are all surjective, then the locally m-convex algebras $\mathcal{M}_{I}(A)$ and $\varprojlim \mathcal{M}_{I}(A_{\alpha})$ are isomorphic.

Theorem

Let $(A, (p_{\alpha})_{\alpha \in \Lambda})$ be a complete locally m-convex *-algebra with continuous involution and such that the respective projective system is perfect. Moreover, suppose that A can be turned into a locally C*-algebra under a weaker locally convex topology than the initial one, denoted by $(A, (q_{\alpha})_{\alpha \in \Lambda})$. Then:

$$\mathcal{M}_{I}((A,(q_{\alpha})_{\alpha\in\Lambda}))\cong \varprojlim \mathcal{M}_{I}(F_{\alpha}),$$

within an isomorphism, where F_{α} , $\alpha \in \Lambda$, are the normed factors in the Arens-Michael decomposition of A under the new topology.

Proof.

By hypothesis, $(q_{\alpha})_{\alpha \in \Lambda}$ is the family of seminorms defining the weaker locally convex topology on A (equivalently, $\ker(p_{\alpha}) \subseteq \ker(q_{\alpha})$, $\alpha \in \Lambda$).

This topology is actually a locally m-convex one. Put $F_{\alpha} \equiv A/\ker(q_{\alpha})$. The factor normed algebras F_{α} , $\alpha \in \Lambda$, in the Arens-Michael decomposition (under the new topology) are C^* -algebras and hence $\widetilde{F}_{\alpha} = F_{\alpha}$. Take the respective analysis

$$A\cong \varprojlim A_{\alpha}$$

with respect to $(p_{\alpha})_{\alpha \in \Lambda}$.

Proof (Cont.)

By hypothesis, each canonical projection map $f_{\alpha}: \varprojlim A_{\alpha} \to A_{\alpha}$ is onto. Denote by

$$g_{\alpha}: \underline{\lim} F_{\alpha} \to F_{\alpha}$$

the respective projection maps corresponding to the family (q_{α}) .

Since $\ker(p_{\alpha}) \subseteq \ker(q_{\alpha})$ there is an induced surjective map $\phi_{\alpha}: A/\ker(p_{\alpha}) \to A/\ker(q_{\alpha})$ given by $\phi_{\alpha}(x+\ker(p_{\alpha})) = x+\ker(q_{\alpha})$. It is easily checked that $\phi_{\alpha} \circ f_{\alpha} = g_{\alpha}$ (here we use the identification $f_{\alpha} = \rho_{\alpha}$). Thus the g_{α} are onto as well.

The assertion follows from Joita's result.

Definition (Haralampidou, 1993)

A **locally** m-convex H^* -algebra is an algebra A equiped with a family $(p_{\alpha})_{\alpha \in \Lambda}$ of Ambrose seminorms in the sense that p_{α} ($\alpha \in \Lambda$) arises from a positive pseudo-inner product <, $>_{\alpha}$ such that the induced topology makes A into a locally m-convex topological algebra.

Moreover, the following conditions are satisfied:

For any $x \in A$, there is an $x^* \in A$, such that

$$\langle xy, z \rangle_{\alpha} = \langle y, x^*z \rangle_{\alpha}$$

 $\langle yx, z \rangle_{\alpha} = \langle y, zx^* \rangle_{\alpha}$

for any $y, z \in A$ and $\alpha \in \Lambda$.

Note that x^* is not necessarily unique. But in the case that A is proper, then x^* is unique and $*: A \to A$, $x \mapsto x^*$ defines an involution in A.

Some Results.

Let $(A, \{p_{\alpha} : p_{\alpha} \in \Lambda\})$ be a proper complete locally *m*-convex H^* -algebra.

Then A can be turned into a locally pre- C^* -algebra (that is, not necessarily complete) defining the family $\{q_\alpha:\alpha\in\Lambda\}$ of C^* -seminorms on A by

$$q_{\alpha}(x) = \sup\{p_{\alpha}(xy) : p_{\alpha}(y) \leq 1\}, \ \alpha \in \Lambda,$$

so that

$$q_{\alpha}(x) \leq p_{\alpha}(x)$$
 for each $x \in A$ and $\alpha \in \Lambda$.

Then the induced topology on A is weaker than the given one.

Moreover,

$$p_{\alpha}(xy) \leq q_{\alpha}(x)p_{\alpha}(y)$$
 for each $x,y \in A$ and $\alpha \in \Lambda$. [El Kinani, 2002].

Corollary

Let $(A, (p_{\alpha})_{\alpha \in \Lambda})$ be a complete locally m-convex H^* -algebra with continuous involution such that the respective projective system is perfect. Endow A with the locally m-convex topology previously defined and let \widetilde{A} be its completion. Then:

$$\mathcal{M}_I(\widetilde{A}) \cong \underline{\varprojlim} \, \mathcal{M}_I(F_\alpha)$$

within an isomorphism, where F_{α} , $\alpha \in \Lambda$ are the normed factors in the Arens-Michael decomposition of \widetilde{A} .

Proof.

Since * is an involution, A is a proper algebra. By the comments preceding the statement, $(A,(q_{\alpha})_{\alpha\in\Lambda})$ is a locally pre- C^* -algebra. Hence its completion, \widetilde{A} , is a locally C^* -algebra; so the previous Theorem yields the assertion.We note that the factors of \widetilde{A} are given by

 $F_{\alpha}=(\widetilde{A},\widetilde{q_{lpha}})$ / ker $\widetilde{q_{lpha}}$, where $\widetilde{q_{lpha}}$ is the extension of q_{lpha} , $lpha\in\Lambda$, to \widetilde{A} .

References.

- [Apostol C, 1971] b*-algebras and their representations. J. London Math. Soc. 3 (1971), 30-38.
- [Dixmier J, 1977] C*-algebras. North-Holland, Amsterdam, 1977.
- [Haralampidou M, 1993] On locally H*-algebras. Math Japon. 38 (1993), 451-460.
- [Haralampidou M, 1994] Annihilator topological algebras. Portug. Math. 51 (1994), 147-162.
- [Haralampidou M. 2002] *The Krull nature of locally C*-algebras*. Function Spaces (Edwardsville, II, 2002), 195-200. Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003.
- [Haralalmpidou M] On the Krull property in topological algebras.
 Comment. Math. (in press.)
- [Haralampidou M, 2009] Centralizers on certain complemented topological algebras. In preparation.
- [Inoue A, 1971] *Locally C*-algebras*. Mem. Fac. Sci. Kyushu Univ. (Ser. A) 25 (1971), 197-235.

References.

- [Joiţa M, 2005] On bounded module maps between Hilbert modules over locally C*-algebras. Acta Math. Univ. Comeneanae, Vol.LXXIV, 1 (2005), 71-78.
- [El Kinani A, 2002] On locally pre-C*-algebra structures in locally m-convex H*-algebras. Turk J. Math. 26 (2002), 263-271.
- [Larsen, R, 1969] The multiplier Problem, Lecture Notes in Mathematics 105. Springer-Verlag, Berlin, 1969.
- [Mallios A, 1986] Topological Algebras. Selected Topics.
 North-Holland, Amsterdam, 1986.
- [Michael, E.A, 1952] Locally multiplicatevely-convex topological algebras. Mem. Amer. Math. Soc. 11 (1952). (Reprinted 1968).
- [Rickart C.E, 1974] General Theory of Banach Algebras. R.E. Krieger Publ. Co. Huntington, N.Y. (1974). (Orig. Ed. 1960, D. Van Nostrand, Rheinhold).
- [Sebastyén Z, 1979] Every C*-seminorm is automatically submultiplicative. Period Math. Hung. 10 (1979), 1-8.