Reversibility and Banach Algebras Anthony G. O'Farrell

National University of Ireland, Maynooth.

http://www.maths.nuim.ie/staff/aof/

DEFINITION

An element g of a group is called *reversible* if it is conjugate in the group to its inverse, i.e. there exists some map h, belonging to the group, such that the conjugate $g^h = h^{-1}gh$ equals g^{-1} . We say that h reverses g, in this case.

The Origins of the Concept:

Classical conservative systems
Harmonic oscillator
n-body problem
Billiards

How I became interested:

Approximation by f(x) + g(y) on compacts in \mathbb{R}^2 .

Approximation by $p(z^2, \bar{z}^2 + \bar{z}^3)$ on a disk.

Biholomorphuc classification of a pair of tangent real-analytic arcs.

Polynomial hull of a disk having an isolated complex tangent.

Each problem involves a pair of non-commuting involutions, so relates to a reversible element in some group of maps.

1. NOTATION

Let G be a group. $I(G) := \{ f \in G : f^2 = \mathrm{id} \}. \ (-involutions)$ $R_f := \{ h \in G : f^h = f^{-1} \} \ (\text{where } f^h = h^{-1}fh).$ $(-reversers \ of \ f)$ $R(G) := \{ f \in G : R_f \neq \emptyset \}.$ $(-reversible \ elements)$ For $A \subset G$, denote $A^n = \{ f_1 \cdots f_n : f_j \in A \}.$ $A^{\infty} = \bigcup_{n=1}^{\infty} A_n.$

Elements of I^2 are called *strongly-reversible*. They are reversed by an involution.

Membership in I^n or R^n is a conjugacy invariant, and $I^2 \subset R$.

 I^{∞} and R^{∞} are normal subgroups of G.

2. The Basic Questions

In each group, G, we ask:

- Which f are reversible in G?
- Which h reverse a given f?
- Describe I^{∞} .
- Describe R^{∞} .
- Is $I^n = I^\infty$ for some n?
- Is $R^n = R^{\infty}$ for some n?
- Does every nonempty R_g have an element of finite order? If so, what orders occur? Is $\min\{o(h): h \in R_g\}$ bounded, for $g \in R$?

If g is reversible by some element of finite order, then it is the product two elements of that (even) order. Thus results about R^n , combined with results about the order of reverses, also give information about factorizing elements of G as a product of elements of at most a given order.

3. Example: $GL(n, \mathbb{C})$

Classification of linear reversible maps on \mathbb{C}^n is simple. Suppose $F \in \mathsf{GL}(n,\mathbb{C})$ is reversible. Since the Jordan normal form of F^{-1} consists of blocks of the same size as F with reciprocal eigenvalues, the eigenvalues of F that are not ± 1 must split into groups of pairs $\lambda, 1/\lambda$. Furthermore, we must have the same number of Jordan blocks of each size for λ as for $1/\lambda$. Vice versa, if the eigenvalues of F are either ± 1 or split into groups of pairs $\lambda, 1/\lambda$ with the same number of Jordan blocks of each size, then both F and F^{-1} have the same Jordan normal form and are therefore conjugate to each other.

4. Survey of Known Results

G abelian:

$$R = I = I^{\infty}$$
.

G free:

$$R = I = \{1\}.$$

FINITE GROUPS

Dihedral D_n :

$$I^2 = G = R.$$

Symmetric S_n :

$$I^2 = G = R.$$

Finite Coxeter:

$$I^2 = G = R.$$

Alternating A_n :

$$I^2 = R$$
.

 $R \neq G$, except when $n \in \{1, 2, 5, 6, 10, 14\}$.

Quaternion 8-group:

$$I^2 \neq R = G$$
.

Finite, simple G:

$$R = \{1\}$$
 if $|G|$ is odd.

$$G = R^2$$
, if $|G|$ is even, except for PSU(3, 3²).

In general, $G \neq I^2$; When it happens is known.

CLASSICAL GROUPS

General Linear GL(n, F) (n > 1):

$$I^2 = R.$$

$$I^4 = I^{\infty} = R^2.$$

Special Linear $SL(n, \mathbb{C})$:

$$I^2 = R$$
 unless $n = 2 \pmod{4}$
 $R^2 = G$.

Orthogonal $O(n, \mathbb{R})$

(
$$\approx$$
 spherical isometries):

$$\overline{I^2} = G$$
.

Special Orthogonal $SO(n, \mathbb{R})$:

$$I^2 = R$$
.

$$I^3 = G \text{ if } n > 3.$$

$$I^2 = G$$
 if $n \neq 2 \pmod{4}$.

Unitary $U(n, \mathbb{C})$:

$$I^2 = R$$

$$I^4 = I^{\infty}$$
.

Special Unitary $SU(n, \mathbb{C})$:

$$I^2 \neq R$$
.

$$I^3 \neq I^6 = G = R^2.$$

Unitary Quaternionic $Sp(n, \mathbb{C})$

$$= \operatorname{Symp}(2n,\mathbb{C}) \cap \operatorname{U}(2n,\mathbb{C}) :$$

$$I^2 \neq R = G = I^6.$$

Spinor Spin (n, \mathbb{C}) :

$$I^2 = G$$
 if $n = 0, 1, 7 \mod 8$.

$$R = G$$
 unless $n = 2 \mod 4$.

$$I^4 = G \text{ if } n \ge 5.$$

DISCRETE MATRIX GROUPS

$$\mathsf{GL}(n,\mathbb{Z})$$
:
$$I^{3n+9} = G.$$

$$I^2 \neq R \subset I^4 \text{ when } n=2.$$
 $\mathbf{Modular} \; \mathsf{PSL}(2,\mathbb{Z})$:

 $I^2 = R$.

FINITE-DIMENSIONAL ISOMETRY GROUPS

Euclidean $\mathsf{Isom}(\mathbb{R}^n)$:

$$I^2 = G$$
.

Orientation-preserving $\mathsf{Isom}^+(\mathbb{R}^n)$:

$$I^3 = G$$
 if $n \ge 3$.

$$I^2 = G$$
 if $n = 0$ or 3 (mod 4).

Hyperbolic $Isom(H^n)$:

$$I^3 = G$$
 if $n \ge 2$.

HOMEOMORPHISM GROUPS

 $\mathsf{Homeo}(\mathbb{R})$:

$$I^2 \neq R$$
.

$$I^3 \neq I^4 = G = R^2.$$

 $\mathsf{Homeo}^+(\mathbb{R})$:

$$R^4 = G$$
.

 $\mathsf{Homeo}(\mathbb{S}^1)$:

$$I^2 \neq R$$
.

$$I^3 = R^2 = G.$$

 $\mathsf{Homeo}^+(\mathbb{S}^1)$:

$$I^2 \neq R$$
.

$$I^3 = R^2 = G.$$

 $\mathsf{Homeo}(\mathbb{S}^n)$:

$$G = I^6$$
 when $n = 2$ or 3. (Open for $n > 3$).

Compact surface MCG:

$$I^n \neq G = I^{\infty}, \forall n \in \mathbb{N}, \text{ if genus} > 2.$$

Maps with extra Structure

Diffeomorphism Diffeo(\mathbb{R}):

$$I^2 \neq R$$
. $I^3 \neq I^4 = G = R^2$. Diffeo⁺(\mathbb{R}):

$$R^4 = G.$$

Formal germs on $(\mathbb{C}^n, 0)$:

$$I^4 = I^{\infty}$$
 when $n = 1$.
 $R^2 = R^{\infty}$ when $n = 1$.
 $R^k = R^{\infty}$ with $k = 3 + 2 \cdot \text{ceiling}(\log_2 n)$
when $n \ge 2$.
 $I^{15} = R^{\infty}$ when $n = 2$.

Piecewise-linear $PL(\mathbb{R})$:

$$I^{2} \neq R.$$

$$I^{3} \neq I^{4} = G = R^{2}.$$

$$PL^{+}(\mathbb{R}):$$

$$I = \{1\}.$$

$$R^{4} = G.$$

PL with finitely many nodes $PLF(\mathbb{R})$:

$$I^2 = R.$$

$$\mathsf{PLF}^+(\mathbb{R}):$$

$$R^4 = G.$$

5. Banach Algebras

Let A be a Banach algebra. We may associate two collections of groups to A.

5.1. A^{-1} and its subgroups. Suppose A has identity (or adjoin one, if not) and ||1|| = 1.

Reversibility in A^{-1} is not interesting unless A is noncommutative. Also central reversibles are just central involutions, so the real problems are about the quotient

$$\frac{A^{-1}}{Z(A^{-1})} \equiv \operatorname{Inn}(A).$$

One interesting subgroup is

$$\mathsf{Iso}(A) = \{ x \in A : \|x\| = \|x^{-1}\| = 1 \}.$$

This coincides with the subgroup (denoted U(A) [1]) of unitary elements, in case A is a C^* algebra.

One may also focus on the connected component of 1 in either group, G, and on the intersection $G \cap E^c$ with the commutator of any subset $E \subset A$.

One also has the normal subgroup $\{x \in A : ||a-1|| < 1\}^{\infty}$, which lies in the group $(\exp A)^{\infty}$.

For instance, Gustafson, Halmos, and Radjavi showed that for finite-dimensional (real or complex) Hilbert spaces H, the group G = GL(H) has $I^4 = I^{\infty}$, and they noted that for infinite-dimensional H, we have $I^4 \neq I^7 = G(H)$. I don't know whether 7 is the best possible value in that statement. What happens with other C^* algebras?

It is known that for finite-dimensional $\mathsf{GL}(H)$, we have $I^2 = R$ in G, and also in the unitary subgroup. What about other C^* algebras?

5.2. $\mathbf{Aut}(A)$ and its subgroups. The main interesting subgroup (apart from the inner automorphism group, already mentioned, is the group of isometric isomorphims. This is often the same as $\mathrm{Aut}(A)$.

As an example, when X is a locally-compact Hausdorff space and $A = C_0(X, \mathbb{C})$, then $\operatorname{Aut}(A)$ is isomorphic to $\operatorname{\mathsf{Homeo}}(X)$, so we have seen answers in case $X = \mathbb{R}^1$ and $X = \mathbb{S}^1$. What about noncommutative algebras?

REFERENCES

- [1] G.R. Allan. Introduction to Banach Algebras. CUP. 2011.
- [2] Gustafson, Halmos and Radjavi. 1976.
- [3] A.G. O'Farrell and Ian Short. Reversibility. In preparation.

MATHEMATICS DEPARTMENT, NUI, MAYNOOTH, CO. KILDARE, IRELAND *E-mail address*: admin@maths.nuim.ie