On problems of Ghahramani-Lau and Johnson

Matthias Neufang

Carleton University, Fields Institute, Université Lille 1

- Ghahramani–Lau Conjecture: Solution via Factorization
- 2 Excursion 1: Set Theory
- **3** Excursion 2: Quantum Groups
- **4 Johnson's Problem:** (Non-)Amenability of $\mathcal{B}(E)$

- 2 Excursion 1: Set Theory
- 3 Excursion 2: Quantum Groups
- 4 Johnson's Problem: (Non-)Amenability of $\mathcal{B}(E)$

 ${\mathcal A}$ Banach algebra; as Banach space: ${\mathcal A}\hookrightarrow {\mathcal A}^{**}$

 \mathcal{A} Banach algebra; as Banach space: $\mathcal{A} \hookrightarrow \mathcal{A}^{**}$

$$X,Y\in\mathcal{A}^{**}$$
, $f\in\mathcal{A}^{*}$, $a,b\in\mathcal{A}$

 ${\mathcal A}$ Banach algebra; as Banach space: ${\mathcal A}\hookrightarrow {\mathcal A}^{**}$

$$X,Y\in\mathcal{A}^{**}$$
, $f\in\mathcal{A}^{*}$, $a,b\in\mathcal{A}$

$$\langle X \square Y, f \rangle = \langle X, Y \square f \rangle$$

 ${\mathcal A}$ Banach algebra; as Banach space: ${\mathcal A}\hookrightarrow {\mathcal A}^{**}$

$$X,Y\in\mathcal{A}^{**}$$
, $f\in\mathcal{A}^{*}$, $a,b\in\mathcal{A}$

$$\langle X \square Y, f \rangle = \langle X, Y \square f \rangle$$

 $\langle Y \square f, a \rangle = \langle Y, f \square a \rangle$

 \mathcal{A} Banach algebra; as Banach space: $\mathcal{A} \hookrightarrow \mathcal{A}^{**}$

$$X, Y \in \mathcal{A}^{**}, f \in \mathcal{A}^*, a, b \in \mathcal{A}$$

$$\langle X \Box Y, f \rangle = \langle X, Y \Box f \rangle$$
$$\langle Y \Box f, a \rangle = \langle Y, f \Box a \rangle$$
$$\langle f \Box a, b \rangle = \langle f, a \cdot b \rangle$$

 ${\mathcal A}$ Banach algebra; as Banach space: ${\mathcal A}\hookrightarrow {\mathcal A}^{**}$

 \exists 2 canonical extensions of product to \mathcal{A}^{**} (Arens '51)

$$X, Y \in \mathcal{A}^{**}, f \in \mathcal{A}^{*}, a, b \in \mathcal{A}$$

$$\langle X \square Y, f \rangle = \langle X, Y \square f \rangle$$

$$\langle Y \square f, a \rangle = \langle Y, f \square a \rangle$$

$$\langle f \square a, b \rangle = \langle f, a \cdot b \rangle$$

...and the other way around:

$$\langle X \triangle Y, f \rangle = \langle Y, f \triangle X \rangle$$
$$\langle f \triangle X, a \rangle = \langle X, a \triangle f \rangle$$
$$\langle a \triangle f, b \rangle = \langle f, b \cdot a \rangle$$

$$A \ni x_i \longrightarrow X \in A^{**} \quad (w^*)$$

 $A \ni y_j \longrightarrow Y \in A^{**} \quad (w^*)$

$$A \ni x_i \longrightarrow X \in A^{**} \quad (w^*)$$

 $A \ni y_j \longrightarrow Y \in A^{**} \quad (w^*)$

$$X \square Y = \lim_{i} \lim_{j} x_{i} \cdot y_{j}$$

 $X \triangle Y = \lim_{j} \lim_{i} x_{i} \cdot y_{j}$

$$A \ni x_i \longrightarrow X \in A^{**} \quad (w^*)$$

 $A \ni y_j \longrightarrow Y \in A^{**} \quad (w^*)$

$$X \square Y = \lim_{i} \lim_{j} x_{i} \cdot y_{j}$$

 $X \triangle Y = \lim_{j} \lim_{i} x_{i} \cdot y_{j}$

 $\Box = \triangle \Leftrightarrow : A$ Arens regular (e.g., operator algebras)

$$A \ni x_i \longrightarrow X \in A^{**} \quad (w^*)$$
 $A \ni y_j \longrightarrow Y \in A^{**} \quad (w^*)$
 $X \square Y = \lim_i \lim_j x_i \cdot y_j$

$$\Box = \triangle \Leftrightarrow : \mathcal{A}$$
 Arens regular (e.g., operator algebras)

 $X \triangle Y = \lim_{i} \lim_{i} x_{i} \cdot y_{i}$

But for algebras closest to the heart of harmonic analysts:

$$X \square Y \neq X \triangle Y$$

$$A \ni x_i \longrightarrow X \in A^{**} \quad (w^*)$$

 $A \ni y_j \longrightarrow Y \in A^{**} \quad (w^*)$

$$X \square Y = \lim_{i} \lim_{j} x_{i} \cdot y_{j}$$

 $X \triangle Y = \lim_{j} \lim_{i} x_{i} \cdot y_{j}$

$$\Box = \triangle \Leftrightarrow : A$$
 Arens regular (e.g., operator algebras)

But for algebras closest to the heart of harmonic analysts:

$$X \square Y \neq X \triangle Y$$

→ How to measure the degree of non-regularity?

$$\frac{Z_{\ell}(\mathcal{A}^{**})}{} := \{ X \mid X \square Y = X \triangle Y \quad \forall Y \}$$

$$\frac{Z_{\ell}(A^{**})}{=} \left\{ X \mid X \square Y = X \triangle Y \quad \forall Y \right\} \\
= \left\{ X \mid Y \mapsto X \square Y \quad w^{*}\text{-cont.} \right\}$$

$$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \square Y = X \triangle Y \quad \forall Y \}
= \{ X \mid Y \mapsto X \square Y \quad w^*\text{-cont.} \}
Z_{r}(\mathcal{A}^{**}) := \{ X \mid Y \square X = Y \triangle X \quad \forall Y \}
= \{ X \mid Y \mapsto Y \triangle X \quad w^*\text{-cont.} \}$$

$$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \square Y = X \triangle Y \quad \forall Y \}
= \{ X \mid Y \mapsto X \square Y \quad w^*\text{-cont.} \}
Z_{r}(\mathcal{A}^{**}) := \{ X \mid Y \square X = Y \triangle X \quad \forall Y \}
= \{ X \mid Y \mapsto Y \triangle X \quad w^*\text{-cont.} \}$$

Excursion 1: Set Theory

 \mathcal{A} Arens regular \Leftrightarrow $Z_{\ell} = Z_r = \mathcal{A}^{**}$

$$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \square Y = X \triangle Y \quad \forall Y \}
= \{ X \mid Y \mapsto X \square Y \quad w^*\text{-cont.} \}
Z_{r}(\mathcal{A}^{**}) := \{ X \mid Y \square X = Y \triangle X \quad \forall Y \}
= \{ X \mid Y \mapsto Y \triangle X \quad w^*\text{-cont.} \}$$

 ${\mathcal A}$ Arens regular $:\Leftrightarrow Z_\ell=Z_r={\mathcal A}^{**}$

Definition (Dales-Lau '05)

 \mathcal{A} Strongly Arens Irregular (SAI) : $\Leftrightarrow Z_{\ell} = Z_r = \mathcal{A}$

The Ghahramani-Lau Conjecture

The Ghahramani–Lau Conjecture

Theorem (Lau-Losert '88)

 $L_1(G)$ is SAI for any locally compact group G.

The Ghahramani–Lau Conjecture

Theorem (Lau-Losert '88)

 $L_1(G)$ is SAI for any locally compact group G.

Conjecture (Lau '94 & Ghahramani-Lau '95)

M(G) is SAI for any locally compact group G.

The Ghahramani-Lau Conjecture

Theorem (Lau-Losert '88)

 $L_1(G)$ is SAI for any locally compact group G.

Conjecture (Lau '94 & Ghahramani-Lau '95)

M(G) is SAI for any locally compact group G.

Theorem (N '05)

The conjecture holds for all non-compact groups G s.t.

$$|G|$$
 non-measurable, OR $\kappa(G) \geq 2^{\chi(G)}$

One cannot prove in ZFC the existence of measurable cardinals (Ulam '30).

The Ghahramani-Lau Conjecture

Theorem (Lau-Losert '88)

 $L_1(G)$ is SAI for any locally compact group G.

Conjecture (Lau '94 & Ghahramani-Lau '95)

M(G) is SAI for any locally compact group G.

Theorem (N '05)

The conjecture holds for all non-compact groups G s.t.

$$|G|$$
 non-measurable, OR $\kappa(G) \geq 2^{\chi(G)}$

One cannot prove in ZFC the existence of measurable cardinals (Ulam '30).

Key technique (N): Factorization

The Ghahramani-Lau Conjecture is always true

The Ghahramani-Lau Conjecture is always true

Theorem (Losert-N-Pachl-Steprāns)

M(G) is SAI for any locally compact group.

The Ghahramani–Lau Conjecture is always true

Theorem (Losert-N-Pachl-Steprāns)

M(G) is SAI for any locally compact group.

Idea of proof: Factorization in the dual of singular measures!

The Ghahramani-Lau Conjecture is always true

Theorem (Losert-N-Pachl-Steprāns)

M(G) is SAI for any locally compact group.

Idea of proof: Factorization in the dual of singular measures!

 \rightarrow Distinction between G metrizable and non-metrizable

Commercial Break 1

For further structural results on $\mathbf{M}(G)^{**}$:

H.G. Dales, A.T.-M. Lau & D. StraussSecond duals of measure algebrasDissertationes Mathematicae (2011)

Central concepts: Thinness & Factorization

Central concepts: Thinness & Factorization

Definition (L-N-P-S)

Let τ be a cardinal. Then $\mu \in \mathbf{M}(G)$ is τ -thin if $\exists P \subseteq G$ s.t. $|P| = \tau$ and $\mu * p \perp \mu * p' \quad \forall \ p \neq p'$ in P.

Definition (L-N-P-S)

Let τ be a cardinal. Then $\mu \in \mathbf{M}(G)$ is τ -thin if $\exists P \subseteq G$ s.t. $|P| = \tau$ and $\mu * p \perp \mu * p' \quad \forall \ p \neq p'$ in P.

Definition (N)

Let M be a subspace of M(G). Then M^* admits factorization if $\exists h \in B_1(M^*)$ s.t.

$$\mathbf{B_1}(M^*) = \overline{\delta_G} \square h \ .$$

Strategy of Proof: Thinness \Rightarrow Factorization \Rightarrow SAI

Strategy of Proof: Thinness \Rightarrow Factorization \Rightarrow SAI

Idea:

- Dual of space of thin measures admits factorization
- factorization forces triviality of topological centre

Strategy of Proof: Thinness \Rightarrow Factorization \Rightarrow SAI

Idea:

- Dual of space of thin measures admits factorization
- factorization forces triviality of topological centre

We use decomposition

$$M(G)^{**} = L_1(G)^{**} \oplus M_s(G)^{**}$$

and establish thinness for singular measures.

Strategy of Proof: Thinness \Rightarrow Factorization \Rightarrow SAI

Idea:

- Dual of space of thin measures admits factorization
- factorization forces triviality of topological centre

We use decomposition

$$M(G)^{**} = L_1(G)^{**} \oplus M_s(G)^{**}$$

and establish thinness for singular measures.

For non-metrizable G we need refinement of decomposition \sim for compact subgroup $K \subseteq G$ consider right K-periodic measures on G ($\mu * k = \mu \ \forall \ k \in K$):

$$\mathbf{M}(G/K) = \mathbf{M}(G) * \lambda_K$$
 left ideal in $\mathbf{M}(G)$

Lemma

Let M be a Banach algebra, $M = M_0 \oplus M_1$. Assume $\exists h \in M^*$ s.t. $\mathbf{B_1}(M^{**}) \Box h = \mathbf{B_1}(M_0^*)$. Then $Z_\ell(M^{**}) \subseteq M_0 \oplus M_1^{**}$.

Lemma

Let M be a Banach algebra, $M = M_0 \oplus M_1$. Assume $\exists h \in M^*$ s.t. $\mathbf{B_1}(M^{**}) \Box h = \mathbf{B_1}(M_0^*)$. Then $Z_{\ell}(M^{**}) \subseteq M_0 \oplus M_1^{**}$.

Proof.

Let $m \in Z_{\ell}(M^{**})$. Then $\psi_h : M^{**} \ni n \mapsto \langle m \square n, h \rangle$ is w^* -cont.

Lemma

Let M be a Banach algebra, $M = M_0 \oplus M_1$. Assume $\exists h \in M^*$ s.t. $\mathbf{B_1}(M^{**}) \Box h = \mathbf{B_1}(M_0^*)$. Then $Z_\ell(M^{**}) \subseteq M_0 \oplus M_1^{**}$.

Proof.

Let $m \in Z_{\ell}(M^{**})$. Then $\psi_h : M^{**} \ni n \mapsto \langle m \square n, h \rangle$ is w^* -cont. But $\varphi_h : n \mapsto n \square h$ is w^* -cont. and $\psi_h = m \circ \varphi_h$.

Lemma

Let M be a Banach algebra, $M = M_0 \oplus M_1$. Assume $\exists h \in M^*$ s.t. $\mathbf{B_1}(M^{**}) \Box h = \mathbf{B_1}(M_0^*)$. Then $Z_\ell(M^{**}) \subseteq M_0 \oplus M_1^{**}$.

Proof.

Let $m \in Z_{\ell}(M^{**})$. Then $\psi_h : M^{**} \ni n \mapsto \langle m \square n, h \rangle$ is w^* -cont.

But $\varphi_h : n \mapsto n \square h$ is w^* -cont. and $\psi_h = m \circ \varphi_h$.

Since $B_1(M^{**})$ is w^* -compact, m is w^* -cont. on

$$B_1(M^{**})\Box h = B_1(M_0^*)$$

so $m \mid_{M_0^*} \in M_0$.

Lemma

Let M be a Banach algebra, $M = M_0 \oplus M_1$. Assume $\exists h \in M^*$ s.t. $B_1(M^{**}) \square h = B_1(M_0^*)$. Then $Z_{\ell}(M^{**}) \subseteq M_0 \oplus M_1^{**}$.

Proof.

Let $m \in Z_{\ell}(M^{**})$. Then $\psi_h : M^{**} \ni n \mapsto \langle m \square n, h \rangle$ is w^* -cont. But $\varphi_h : n \mapsto n \square h$ is w^* -cont. and $\psi_h = m \circ \varphi_h$. Since $B_1(M^{**})$ is w^* -compact, m is w^* -cont. on

$$B_1(M^{**})\Box h = B_1(M_0^*)$$

so $m \mid_{M_0^*} \in M_0$.

 \rightarrow Refined version for subspaces $M_2 = M_0 \oplus M_1$ in M

Lemma (L-N-P-S)

Let M_0 subspace of $\mathbf{M}(G)$ s.t. if $\mu \in M_0$ then $|\mu| \in M_0$ and μ is τ -thin $(\tau > \aleph_0)$.

Lemma (L-N-P-S)

Let M_0 subspace of $\mathbf{M}(G)$ s.t. if $\mu \in M_0$ then $|\mu| \in M_0$ and μ is τ -thin $(\tau > \aleph_0)$.

If $(F_i)_{i \in I}$ is a family of finite subsets of M_0 and $|I| \le \tau$, then $\exists x_i \in G \text{ s.t. } (F_i * x_i) \perp (F_i * x_i) \text{ when } i \ne j \text{ in } I$.

Lemma (L-N-P-S)

Let M_0 subspace of $\mathbf{M}(G)$ s.t. if $\mu \in M_0$ then $|\mu| \in M_0$ and μ is τ -thin $(\tau > \aleph_0)$.

If $(F_i)_{i\in I}$ is a family of finite subsets of M_0 and $|I| \le \tau$, then $\exists x_i \in G$ s.t. $(F_i * x_i) \perp (F_j * x_j)$ when $i \ne j$ in I.

A direct sum $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ is called G-invariant if $M_k * G \subseteq M_k$.

Proposition (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant. Let \mathcal{O} be collection of w^* -open sets of $\mathbf{B_1}(M_0^*)$ with $|\mathcal{O}| > \aleph_0$.

Proposition (L-N-P-S)

Let $M_2=M_0\oplus M_1$ in $\mathbf{M}(G)$ be G-invariant. Let $\mathcal O$ be collection of w^* -open sets of $\mathbf{B_1}(M_0^*)$ with $|\mathcal O|>\aleph_0$. Assume that $\mu\in M_0$ implies that $|\mu|\in M_0$ and that μ is $|\mathcal O|$ -thin.

Proposition (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant. Let \mathcal{O} be collection of w^* -open sets of $\mathbf{B_1}(M_0^*)$ with $|\mathcal{O}| > \aleph_0$. Assume that $\mu \in M_0$ implies that $|\mu| \in M_0$ and that μ is $|\mathcal{O}|$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ s.t. $(\delta_G \Box h) \mid_{M_0}$ intersects every set from \mathcal{O} .

Proposition (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant. Let \mathcal{O} be collection of w^* -open sets of $\mathbf{B_1}(M_0^*)$ with $|\mathcal{O}| > \aleph_0$. Assume that $\mu \in M_0$ implies that $|\mu| \in M_0$ and that μ is $|\mathcal{O}|$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ s.t. $(\delta_G \Box h) \mid_{M_0}$ intersects every set from \mathcal{O} .

Proof.

 $\mathcal{O} \ni U = \{ f \in \mathbf{B_1}(M_0^*) \mid |\langle f, \mu \rangle - \langle g_U, \mu \rangle| < \varepsilon_U \text{ for all } \mu \in F_U \}$ where $F_U \subseteq M_0$ finite, $g_U \in \mathbf{B_1}(M_0^*)$ and $\varepsilon_U > 0$.

Proposition (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant. Let \mathcal{O} be collection of w^* -open sets of $\mathbf{B_1}(M_0^*)$ with $|\mathcal{O}| > \aleph_0$. Assume that $\mu \in M_0$ implies that $|\mu| \in M_0$ and that μ is $|\mathcal{O}|$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ s.t. $(\delta_G \Box h) \mid_{M_0}$ intersects every set from \mathcal{O} .

Proof.

 $\mathcal{O} \ni U = \{ f \in \mathbf{B_1}(M_0^*) \mid |\langle f, \mu \rangle - \langle g_U, \mu \rangle| < \varepsilon_U \text{ for all } \mu \in F_U \}$ where $F_U \subseteq M_0$ finite, $g_U \in \mathbf{B_1}(M_0^*)$ and $\varepsilon_U > 0$. Separation Lemma $\leadsto x_U \in G$ s.t. $(F_U * x_U) \perp (F_V * x_V)$ if $U \neq V$

Proposition (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant. Let \mathcal{O} be collection of w^* -open sets of $\mathbf{B_1}(M_0^*)$ with $|\mathcal{O}| > \aleph_0$. Assume that $\mu \in M_0$ implies that $|\mu| \in M_0$ and that μ is $|\mathcal{O}|$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ s.t. $(\delta_G \Box h) \mid_{M_0}$ intersects every set from \mathcal{O} .

Proof.

 $\mathcal{O} \ni U = \{ f \in \mathbf{B_1}(M_0^*) \mid |\langle f, \mu \rangle - \langle g_U, \mu \rangle| < \varepsilon_U \text{ for all } \mu \in F_U \}$ where $F_U \subseteq M_0$ finite, $g_U \in \mathbf{B_1}(M_0^*)$ and $\varepsilon_U > 0$. Separation Lemma $\leadsto x_U \in G$ s.t. $(F_U * x_U) \perp (F_V * x_V)$ if $U \neq V$ Define $h_U \in \mathbf{B_1}(M_0^*)$ by $\langle h_U, \nu \rangle = \langle g_U, \nu * x_U^{-1} \rangle$.

Proposition (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant. Let \mathcal{O} be collection of w^* -open sets of $\mathbf{B_1}(M_0^*)$ with $|\mathcal{O}| > \aleph_0$. Assume that $\mu \in M_0$ implies that $|\mu| \in M_0$ and that μ is $|\mathcal{O}|$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ s.t. $(\delta_G \Box h) \mid_{M_0}$ intersects every set from \mathcal{O} .

Proof.

 $\mathcal{O} \ni U = \{f \in \mathbf{B_1}(M_0^*) \mid |\langle f, \mu \rangle - \langle g_U, \mu \rangle| < \varepsilon_U \text{ for all } \mu \in F_U \}$ where $F_U \subseteq M_0$ finite, $g_U \in \mathbf{B_1}(M_0^*)$ and $\varepsilon_U > 0$. Separation Lemma $\leadsto x_U \in G$ s.t. $(F_U * x_U) \perp (F_V * x_V)$ if $U \neq V$ Define $h_U \in \mathbf{B_1}(M_0^*)$ by $\langle h_U, \nu \rangle = \langle g_U, \nu * x_U^{-1} \rangle$. Then $\exists h \in \mathbf{B_1}(\mathbf{M}(G)^*)$ that agrees with h_U on $F_U * x_U$ and vanishes on M_1 . We check that $(\delta_{x_U} \Box h) \mid_{M_0} \in U$.

Theorem (L-N-P-S)

Let $\mathbf{M}(G) = M_0 \oplus M_1$ a G-invariant decomposition. Assume $\mu \in M_0$ implies that $|\mu| \in M_0$ and μ is $d(M_0)$ -thin.

Theorem (L-N-P-S)

Let $\mathbf{M}(G) = M_0 \oplus M_1$ a G-invariant decomposition. Assume $\mu \in M_0$ implies that $|\mu| \in M_0$ and μ is $d(M_0)$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ such that $\overline{\delta_G} \Box h = \mathbf{B_1}(M_0^*)$.

Theorem (L-N-P-S)

Let $\mathbf{M}(G) = M_0 \oplus M_1$ a G-invariant decomposition. Assume $\mu \in M_0$ implies that $|\mu| \in M_0$ and μ is $d(M_0)$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ such that $\overline{\delta_G} \Box h = \mathbf{B_1}(M_0^*)$.

Here, necessarily $d(M_0) > \aleph_0$ (if M_0 non-trivial).

Theorem (L-N-P-S)

Let $\mathbf{M}(G) = M_0 \oplus M_1$ a G-invariant decomposition. Assume $\mu \in M_0$ implies that $|\mu| \in M_0$ and μ is $d(M_0)$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ such that $\overline{\delta_G} \Box h = \mathbf{B_1}(M_0^*)$.

Here, necessarily $d(M_0) > \aleph_0$ (if M_0 non-trivial).

Corollary: Thinness ⇒ **Small Centre**

Let $\mathbf{M}(G) = M_0 \oplus M_1$ be G-invariant.

Theorem (L-N-P-S)

Let $\mathbf{M}(G) = M_0 \oplus M_1$ a G-invariant decomposition. Assume $\mu \in M_0$ implies that $|\mu| \in M_0$ and μ is $d(M_0)$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ such that $\overline{\delta_G} \Box h = \mathbf{B_1}(M_0^*)$.

Here, necessarily $d(M_0) > \aleph_0$ (if M_0 non-trivial).

Corollary: Thinness ⇒ **Small Centre**

Let $\mathbf{M}(G) = M_0 \oplus M_1$ be G-invariant. Assume $\mu \in M_0$ implies that $|\mu| \in M_0$ and μ is $d(M_0)$ -thin.

Theorem (L-N-P-S)

Let $\mathbf{M}(G) = M_0 \oplus M_1$ a G-invariant decomposition. Assume $\mu \in M_0$ implies that $|\mu| \in M_0$ and μ is $d(M_0)$ -thin. Then $\exists h \in \mathbf{B_1}(M_0^*)$ such that $\overline{\delta_G} \Box h = \mathbf{B_1}(M_0^*)$.

Here, necessarily $d(M_0) > \aleph_0$ (if M_0 non-trivial).

Corollary: Thinness ⇒ **Small Centre**

Let $\mathbf{M}(G) = M_0 \oplus M_1$ be G-invariant. Assume $\mu \in M_0$ implies that $|\mu| \in M_0$ and μ is $d(M_0)$ -thin. Then $Z_{\ell}(\mathbf{M}(G)^{**}) \subseteq M_0 \oplus M_1^{**}$.

Theorem (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant.

Theorem (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant.

Assume:

- $\mu \in M_0$ implies $|\mu| \in M_0$ and μ is $d(M_0)$ -thin
- $\widetilde{M}_2 = \widetilde{M}_0 \oplus \widetilde{M}_1$ in $\mathbf{M}(G)$ also G-invariant, s.t. $M_i \subseteq \widetilde{M}_i$

Theorem (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant.

Assume:

- $\mu \in M_0$ implies $|\mu| \in M_0$ and μ is $d(M_0)$ -thin
- $\widetilde{M}_2 = \widetilde{M}_0 \oplus \widetilde{M}_1$ in $\mathbf{M}(G)$ also G-invariant, s.t. $M_i \subseteq \widetilde{M}_i$

Then
$$\exists h \in \mathbf{B_1}(\widetilde{M_0}^*)$$
 s.t. $(\overline{\delta_G} \Box h) \mid_{M_0} = \mathbf{B_1}(M_0^*)$. Hence

$$Z_{\ell}(\mathbf{M}(G)^{**}) \cap M_2^{**} \subseteq M_0 \oplus M_1^{**}$$
.

Theorem (L-N-P-S)

Let $M_2 = M_0 \oplus M_1$ in $\mathbf{M}(G)$ be G-invariant.

Assume:

- $\mu \in M_0$ implies $|\mu| \in M_0$ and μ is $d(M_0)$ -thin
- $\widetilde{M}_2 = \widetilde{M}_0 \oplus \widetilde{M}_1$ in $\mathbf{M}(G)$ also G-invariant, s.t. $M_i \subseteq \widetilde{M}_i$

Then $\exists h \in \mathsf{B_1}(\widetilde{M_0}^*)$ s.t. $(\overline{\delta_G} \Box h) \mid_{M_0} = \mathsf{B_1}(M_0^*)$. Hence

$$Z_{\ell}(\mathbf{M}(G)^{**}) \cap M_2^{**} \subseteq M_0 \oplus M_1^{**}$$
.

The next result was proved by Prokaj ('03) for $G = \mathbb{R}$.

Theorem: Thinness of Singular Measures (L-N-P-S)

Let G be non-discrete. Then every $\mu \in \mathbf{M}_s(G)$ is $\mathfrak{c}\kappa(G)$ -thin.

Proof of Main Theorem — metrizable case

Proof of Main Theorem — metrizable case

Theorem (L-N-P-S)

Let K a compact subgroup of G with G/K metrizable. Then $Z_{\ell}(\mathbf{M}(G)^{**}) \cap \mathbf{M}(G/K)^{**} \subseteq \mathbf{M}(G/K)$.

 \sim Case of $K = \{e_G\}$ gives Main Theorem for metrizable G.

Proof of Main Theorem — metrizable case

Theorem (L-N-P-S)

Let K a compact subgroup of G with G/K metrizable. Then $Z_{\ell}(\mathsf{M}(G)^{**}) \cap \mathsf{M}(G/K)^{**} \subseteq \mathsf{M}(G/K).$

Excursion 2: Quantum Groups

 \sim Case of $K = \{e_G\}$ gives Main Theorem for metrizable G.

Proof.

- $M_2 = \mathbf{M}(G/K), M_1 = L_1(G) \cap M_2, M_0 = \mathbf{M}_s(G) \cap M_2$
- $M_2 = M(G), M_1 = L_1(G), M_0 = M_s(G)$

Proof of Main Theorem — metrizable case

Theorem (L-N-P-S)

Let K a compact subgroup of G with G/K metrizable. Then $Z_{\ell}(\mathbf{M}(G)^{**}) \cap \mathbf{M}(G/K)^{**} \subseteq \mathbf{M}(G/K)$.

 \sim Case of $K = \{e_G\}$ gives Main Theorem for metrizable G.

Proof.

- $M_2 = \mathbf{M}(G/K)$, $M_1 = L_1(G) \cap M_2$, $M_0 = \mathbf{M}_s(G) \cap M_2$
- $\widetilde{M}_2 = \mathbf{M}(G)$, $\widetilde{M}_1 = L_1(G)$, $\widetilde{M}_0 = \mathbf{M}_s(G)$

Factorization on Subspaces of Thin Measures, Thinness of Singular Measures & "Thinness ⇒ Triviality of Topological Centre" yield

$$Z_{\ell}(\mathbf{M}(G)^{**}) \subset \mathbf{M}_{s}(G/K) \oplus L_{1}(G)^{**}$$
.

Theorem (L-N-P-S)

Let K a compact subgroup of G with G/K metrizable. Then $Z_{\ell}(\mathbf{M}(G)^{**}) \cap \mathbf{M}(G/K)^{**} \subseteq \mathbf{M}(G/K)$.

 \sim Case of $K = \{e_G\}$ gives Main Theorem for metrizable G.

Proof.

- $M_2 = \mathbf{M}(G/K)$, $M_1 = L_1(G) \cap M_2$, $M_0 = \mathbf{M}_s(G) \cap M_2$
- $\widetilde{M}_2 = \mathbf{M}(G)$, $\widetilde{M}_1 = L_1(G)$, $\widetilde{M}_0 = \mathbf{M}_s(G)$

Factorization on Subspaces of Thin Measures, Thinness of Singular Measures & "Thinness ⇒ Triviality of Topological Centre" yield

$$Z_{\ell}(\mathbf{M}(G)^{**}) \subseteq \mathbf{M_s}(G/K) \oplus L_1(G)^{**}$$
.

We conclude by using that $L_1(G)$ is SAI.

Non-metrizable case – preparations

Non-metrizable case – preparations

Let
$$\tau$$
 be s.t. $\aleph_0 \le \tau \le \chi(G)$. Put

$$\mathcal{K}_{\tau} = \{ K \mid K \text{ compact subgroup of } G, \ \chi(G/K) \leq \tau \}$$
 .

Non-metrizable case – preparations

Let
$$\tau$$
 be s.t. $\aleph_0 \le \tau \le \chi(G)$. Put

$$\mathcal{K}_{\tau} = \{ K \mid K \text{ compact subgroup of } G, \ \chi(G/K) \leq \tau \}$$
 .

Further, for $\tau > \aleph_0$, put

$$\mathcal{K}_{\tau}^{\circ} = \{ K \mid K \text{ compact subgroup of } G, \ \chi(G/K) < \tau \}$$
.

We introduce:

measures of character au

$$\mathbf{M}_{ au}(G) = igcup_{K\!\in\!\mathcal{K}_{ au}} \mathbf{M}(G/K)$$

We introduce:

measures of character au

$$\mathsf{M}_{ au}(\mathsf{G}) = igcup_{\mathsf{K} \in \mathcal{K}_{ au}} \mathsf{M}(\mathsf{G}/\mathsf{K})$$

strongly singular measures of character au

$$\mathbf{M}_{\mathsf{ss},\tau}(G) = \{ \mu \in M_{\mathsf{s}}(G) \cap \mathbf{M}_{\tau}(G) \mid \mu \perp \mathbf{M}_{\tau_1}(G) \ \forall \ \tau_1 < \tau \}$$

Excursion 1: Set Theory

We introduce:

measures of character au

$$\mathbf{M}_{\tau}(G) = \bigcup_{K \in \mathcal{K}_{\tau}} \mathbf{M}(G/K)$$

strongly singular measures of character τ

$$\mathbf{M}_{\mathbf{ss},\tau}(G) = \{ \mu \in M_{\mathbf{s}}(G) \cap \mathbf{M}_{\tau}(G) \mid \mu \perp \mathbf{M}_{\tau_1}(G) \ \forall \ \tau_1 < \tau \}$$

approximately invariant measures of character τ

$$\mathbf{M}_{\mathbf{ai},\tau}(G) = \{ \mu \in \mathbf{M}_{\tau}(G) \mid \mu = \| \cdot \| - \lim_{K \in \mathcal{K}^{\circ}_{\tau}} \mu * \lambda_{K} \}$$

We put

$$\mathsf{M}_{\mathsf{ss},leph_0}(\mathit{G}) = \mathsf{M}_{\mathit{s}}(\mathit{G}) \cap \mathsf{M}_{leph_0}(\mathit{G})$$

and

$$\mathbf{M}_{\mathsf{ai},\aleph_0}(G) = L_1(G).$$

We put

$$\mathsf{M}_{\mathsf{ss},leph_0}(\mathit{G}) = \mathsf{M}_{\mathit{s}}(\mathit{G}) \cap \mathsf{M}_{leph_0}(\mathit{G})$$

and

$$\mathbf{M}_{ai,\aleph_0}(G) = L_1(G).$$

For compact (non-open) subgroup K of G, we put

$$\mathsf{M}_{\mathsf{ss}}(\mathsf{G}/\mathsf{K}) = \mathsf{M}(\mathsf{G}/\mathsf{K}) \cap \mathsf{M}_{\mathsf{ss},\chi(\mathsf{G}/\mathsf{K})}(\mathsf{G})$$

and

$$M_{ai}(G/K) = M(G/K) \cap M_{ai,\chi(G/K)}(G).$$

Proposition (L-N-P-S)

Let τ s.t. $\aleph_0 \le \tau \le \chi(G)$, K a (non-open) compact subgroup.

• $\mathbf{M}_{\tau}(G)$ and $\mathbf{M}_{\mathbf{ai},\tau}(G)$ are ideals in $\mathbf{M}(G)$

Proposition (L-N-P-S)

Let τ s.t. $\aleph_0 \le \tau \le \chi(G)$, K a (non-open) compact subgroup.

- $\mathbf{M}_{\tau}(G)$ and $\mathbf{M}_{\mathbf{ai},\tau}(G)$ are ideals in $\mathbf{M}(G)$
- We have

$$egin{aligned} \mathsf{M}_{ au}(\mathit{G}) &= \mathsf{M}_{\mathsf{ss}, au}(\mathit{G}) \oplus \mathsf{M}_{\mathsf{ai}, au}(\mathit{G}) \ & \mathsf{M}_{\mathsf{ss}, au}(\mathit{G}) \perp \mathsf{M}_{\mathsf{ai}, au}(\mathit{G}) \end{aligned}$$

Proposition (L-N-P-S)

Let τ s.t. $\aleph_0 \le \tau \le \chi(G)$, K a (non-open) compact subgroup.

- $\mathbf{M}_{\tau}(G)$ and $\mathbf{M}_{\mathbf{ai},\tau}(G)$ are ideals in $\mathbf{M}(G)$
- We have

We have

$$\mathbf{M}(G/K) = \mathbf{M}_{ss}(G/K) \oplus \mathbf{M}_{ai}(G/K)$$

$$\mathbf{M}_{ss}(G/K) \perp \mathbf{M}_{ai}(G/K)$$

Thinness of strongly singular measures

Thinness of strongly singular measures

Theorem (L-N-P-S)

Let $\aleph_0 \leq \tau \leq \chi(G)$. Then any $\mu \in \mathbf{M}_{ss,\tau}(G)$ is 2^{τ} -thin.

Thinness of strongly singular measures

Theorem (L-N-P-S)

Let $\aleph_0 \leq \tau \leq \chi(G)$. Then any $\mu \in \mathbf{M}_{ss,\tau}(G)$ is 2^{τ} -thin.

Corollary

K compact subgroup. Then any $\mu \in \mathbf{M}_{ss}(G/K)$ is |G/K|-thin.

Characterizations of our classes of measures

Characterizations of our classes of measures

For compact subgroup K of G with G/K non-metrizable, put

$$\mathcal{K}_{\mathcal{K}} = \{ L \supseteq \mathcal{K} \mid L \text{ comp. subgr. of } \mathcal{G}, \ \chi(\mathcal{G}/\mathcal{L}) < \chi(\mathcal{G}/\mathcal{K}) \}$$

Excursion 1: Set Theory

For compact subgroup K of G with G/K non-metrizable, put

$$\mathcal{K}_K = \{L \supseteq K \mid L \text{ comp. subgr. of } G, \ \chi(G/L) < \chi(G/K)\}$$

Lemma (L-N-P-S)

Let $\nu \in \mathbf{M}(G/K)$. Then:

- $\nu \in \mathbf{M}_{ai}(G/K) \Leftrightarrow \nu = \|\cdot\| \lim_{I \in \mathcal{K}_{\mathcal{K}}} \nu * \lambda_I$
- $\nu \in \mathbf{M}_{ss}(G/K) \Leftrightarrow \nu \perp \nu * \lambda_I$ for all $L \in \mathcal{K}_K$

Theorem (L-N-P-S)

Let K be a compact subgroup of G. Then

$$Z_{\ell}(\mathsf{M}(G)^{**})\cap \mathsf{M}(G/K)^{**}\subseteq \mathsf{M}(G/K).$$

The case where $K = \{e_G\}$ gives the Main Theorem.

Theorem (L-N-P-S)

Let K be a compact subgroup of G. Then

$$Z_{\ell}(\mathbf{M}(G)^{**}) \cap \mathbf{M}(G/K)^{**} \subseteq \mathbf{M}(G/K).$$

The case where $K=\{e_G\}$ gives the Main Theorem. Use transf. ind. on $\tau=\chi(G/K)$. The case $\chi(G/K)\leq\aleph_0$ is done. So assume $\chi(G/K)>\aleph_0$ and Theorem holds for all $L\in\mathcal{K}_{\tau}^{\circ}$.

Theorem (L-N-P-S)

Let K be a compact subgroup of G. Then

$$Z_{\ell}(\mathsf{M}(G)^{**})\cap \mathsf{M}(G/K)^{**}\subseteq \mathsf{M}(G/K).$$

The case where $K = \{e_G\}$ gives the Main Theorem. Use transf. ind. on $\tau = \chi(G/K)$. The case $\chi(G/K) \leq \aleph_0$ is done. So assume $\chi(G/K) > \aleph_0$ and Theorem holds for all $L \in \mathcal{K}_{\tau}^{\circ}$.

•
$$M_0 = M_{ss}(G/K)$$
, $M_1 = M_{ai}(G/K)$, $M_2 = M(G/K)$

$$\bullet \ \ \widetilde{M}_0 = \mathbf{M}_{\mathbf{ss},\tau}, \ \widetilde{M}_1 = \mathbf{M}_{\mathbf{ai},\tau}, \ \widetilde{M}_2 = \mathbf{M}_{\tau}$$

Theorem (L-N-P-S)

Let K be a compact subgroup of G. Then

$$Z_{\ell}(\mathsf{M}(G)^{**})\cap \mathsf{M}(G/K)^{**}\subseteq \mathsf{M}(G/K).$$

The case where $K = \{e_G\}$ gives the Main Theorem. Use transf. ind. on $\tau = \chi(G/K)$. The case $\chi(G/K) \leq \aleph_0$ is done. So assume $\chi(G/K) > \aleph_0$ and Theorem holds for all $L \in \mathcal{K}^{\circ}_{\tau}$.

- $M_0 = M_{ss}(G/K)$, $M_1 = M_{ai}(G/K)$, $M_2 = M(G/K)$
- ullet $\widetilde{M_0} = oldsymbol{\mathsf{M}}_{\mathsf{ss}, au}$, $\widetilde{M_1} = oldsymbol{\mathsf{M}}_{\mathsf{ai}, au}$, $\widetilde{M_2} = oldsymbol{\mathsf{M}}_{ au}$

Factorization Theorem for Subspaces & Thinness of Strongly Singular Measures yield

$$Z_{\ell}(M(G)^{**}) \cap M(G/K)^{**} \subseteq M_{ss}(G/K) \oplus M_{ai}(G/K)^{**}$$
.

Theorem (L-N-P-S)

Let K be a compact subgroup of G. Then

$$Z_{\ell}(M(G)^{**}) \cap M(G/K)^{**} \subseteq M(G/K).$$

The case where $K = \{e_G\}$ gives the Main Theorem. Use transf. ind. on $\tau = \chi(G/K)$. The case $\chi(G/K) \leq \aleph_0$ is done. So assume $\chi(G/K) > \aleph_0$ and Theorem holds for all $L \in \mathcal{K}_{\tau}^{\circ}$.

•
$$M_0 = M_{ss}(G/K)$$
, $M_1 = M_{ai}(G/K)$, $M_2 = M(G/K)$

$$ullet$$
 $\widetilde{M}_0 = oldsymbol{\mathsf{M}}_{\mathbf{ss}, au}$, $\widetilde{M}_1 = oldsymbol{\mathsf{M}}_{\mathbf{ai}, au}$, $\widetilde{M}_2 = oldsymbol{\mathsf{M}}_{ au}$

Factorization Theorem for Subspaces & Thinness of Strongly Singular Measures yield

$$Z_{\ell}(\mathsf{M}(G)^{**})\cap \mathsf{M}(G/K)^{**}\subseteq \mathsf{M}_{\mathsf{ss}}(G/K)\oplus \mathsf{M}_{\mathsf{ai}}(G/K)^{**}$$
.

So it is enough to consider $m \in Z_{\ell}(\mathbf{M}(G)^{**}) \cap \mathbf{M}_{ai}(G/K)^{**}$.

By our inductive assumption, $m \square \lambda_L \in \mathbf{M}(G/L)$ for all $L \in \mathcal{K}_{\tau}^{\circ}$. Let $\mu \in \mathbf{M}(G/K)$ be the restriction of m to $C_0(G/K) \subseteq \mathbf{M}(G/K)^*$. One sees that $m \square \lambda_I = \mu * \lambda_I$.

By our inductive assumption, $m \square \lambda_L \in \mathbf{M}(G/L)$ for all $L \in \mathcal{K}_{\tau}^{\circ}$. Let $\mu \in \mathbf{M}(G/K)$ be the restriction of m to $C_0(G/K) \subseteq \mathbf{M}(G/K)^*$. One sees that $m \square \lambda_L = \mu * \lambda_L$.

Let $\delta \in \mathbf{M_{ai}}(G/K)^{**}$ be a w^* -cluster point of $(\lambda_L)_{L \in \mathcal{K}_K}$. By approximate invariance, $(\lambda_L)_{L \in \mathcal{K}_K}$ is a BRAI for $\mathbf{M_{ai}}(G/K)$. Since $m \in \mathbf{M_{ai}}(G/K)^{**}$, we have

$$m = m \square \delta = w^* - \lim m \square \lambda_L = w^* - \lim \mu * \lambda_L = \mu \square \delta.$$

Since this holds for every cluster-point δ , we have $m=w^*-\lim_{L\in\mathcal{K}_K}\,\mu*\lambda_L.$

By our inductive assumption, $m\square \lambda_I \in \mathbf{M}(G/L)$ for all $L \in \mathcal{K}_{\pi}^{\circ}$. Let $\mu \in \mathbf{M}(G/K)$ be the restriction of m to $C_0(G/K) \subset \mathbf{M}(G/K)^*$. One sees that $m \square \lambda_I = \mu * \lambda_I$.

Let $\delta \in \mathbf{M}_{ai}(G/K)^{**}$ be a w^* -cluster point of $(\lambda_I)_{I \in \mathcal{K}_K}$. By approximate invariance, $(\lambda_L)_{L \in \mathcal{K}_K}$ is a BRAI for $\mathbf{M}_{ai}(G/K)$. Since $m \in \mathbf{M}_{ai}(G/K)^{**}$, we have

$$m = m \square \delta = w^* - \lim m \square \lambda_L = w^* - \lim \mu * \lambda_L = \mu \square \delta.$$

Since this holds for every cluster-point δ , we have $m = w^* - \lim_{L \in \mathcal{K}_{\kappa}} \mu * \lambda_L$.

Excursion 1: Set Theory

One now obtains that $\mu \in \mathbf{M}_{ai}$, and hence $m = \mu$. \square

One-sided ideals

One-sided ideals

Proposition (L-N-P-S)

Let G be compact metrizable, I a left ideal with BRAI in $L_1(G)$ (e.g., $L_1(G) * \lambda_K$). Then I is LSAI.

One-sided ideals

Proposition (L-N-P-S)

Let G be compact metrizable, I a left ideal with BRAI in $L_1(G)$ (e.g., $L_1(G) * \lambda_K$). Then I is LSAI.

Proof.

We have $I = L_1(G) * \mu$ for an idempotent measure μ . So I is WSC, has a sequential BRAI, and is an ideal in its bidual. We conclude by a result of Baker–Lau–Pym ('98).

Ghahramani–Lau beyond local compactness

Ghahramani-Lau beyond local compactness

Theorem (L-N-P-S)

Let G be any Polish group. Then M(G) is SAI.

Ghahramani-Lau beyond local compactness

Theorem (L-N-P-S)

Let G be any Polish group. Then M(G) is SAI.

Ingredients of proof:

Theorem (Mycielski)

Let G be a Polish group and $\emptyset \neq Z \subseteq G$ a meagre subset. Then there is a perfect set $P \subseteq G$ s.t. $xy^{-1} \notin Z$ for all $x \neq y$ in P.

Ghahramani-Lau beyond local compactness

Theorem (L-N-P-S)

Let G be any Polish group. Then M(G) is SAI.

Ingredients of proof:

Theorem (Mycielski)

Let G be a Polish group and $\emptyset \neq Z \subseteq G$ a meagre subset. Then there is a perfect set $P \subseteq G$ s.t. $xy^{-1} \notin Z$ for all $x \neq y$ in P.

Lemma (Well-known)

If a Polish group G contains a non-meagre, σ -compact Borel set, then G is locally compact.

Ghahramani-Lau beyond local compactness

Theorem (L-N-P-S)

Let G be any Polish group. Then M(G) is SAI.

Ingredients of proof:

Theorem (Mycielski)

Let G be a Polish group and $\emptyset \neq Z \subseteq G$ a meagre subset. Then there is a perfect set $P \subseteq G$ s.t. $xy^{-1} \notin Z$ for all $x \neq y$ in P.

Excursion 2: Quantum Groups

Lemma (Well-known)

If a Polish group G contains a non-meagre, σ -compact Borel set, then G is locally compact.

Theorem (L–N–P–S)

If G is a Polish, non locally compact group then every measure in M(G) is c-thin.

- Ghahramani-Lau Conjecture: Solution via Factorization
- 2 Excursion 1: Set Theory
- 3 Excursion 2: Quantum Groups
- **4** Johnson's Problem: (Non-)Amenability of $\mathcal{B}(E)$

Definition (N-P-S)

 \mathcal{A} Banach algebra. The left factorization ideal $\mathfrak{F}(\mathcal{A})$ is the ideal of subsets of $\mathbf{B_1}(\mathcal{A}^*)$ generated by $\{\mathbf{B_1}(\mathcal{A}^{**}) \Box h \mid h \in \mathbf{B_1}(\mathcal{A}^*)\}$.

Definition (N-P-S)

 \mathcal{A} Banach algebra. The left factorization ideal $\mathfrak{F}(\mathcal{A})$ is the ideal of subsets of $\mathbf{B_1}(\mathcal{A}^*)$ generated by $\{\mathbf{B_1}(\mathcal{A}^{**}) \Box h \mid h \in \mathbf{B_1}(\mathcal{A}^*)\}$.

Theorem (N)

G non-compact $\Rightarrow \mathfrak{F}(L_1(G)) = \mathfrak{P}(\mathsf{B}_1(L_\infty(G)))$ (non-proper ideal)

Definition (N-P-S)

 $\mathcal A$ Banach algebra. The left factorization ideal $\mathfrak F(\mathcal A)$ is the ideal of subsets of $B_1(\mathcal A^*)$ generated by $\{B_1(\mathcal A^{**})\Box h\mid h\in B_1(\mathcal A^*)\}.$

Theorem (N)

G non-compact
$$\Rightarrow \mathfrak{F}(L_1(G)) = \mathfrak{P}(\mathsf{B_1}(L_\infty(G)))$$
 (non-proper ideal)

<u>Recall:</u> \mathfrak{I} on X; then <u>covering number $\mathbf{cov}(\mathfrak{I}) = \text{least cardinal of family } \mathfrak{B} \subseteq \mathfrak{I}$ with $\cup \mathfrak{B} = X$ </u>

Definition (N-P-S)

 \mathcal{A} Banach algebra. The left factorization ideal $\mathfrak{F}(\mathcal{A})$ is the ideal of subsets of $\mathbf{B_1}(\mathcal{A}^*)$ generated by $\{\mathbf{B_1}(\mathcal{A}^{**}) \Box h \mid h \in \mathbf{B_1}(\mathcal{A}^*)\}$.

Theorem (N)

$$G$$
 non-compact $\Rightarrow \mathfrak{F}(L_1(G)) = \mathfrak{P}(\mathsf{B_1}(L_\infty(G)))$ (non-proper ideal)

Recall: $\mathfrak I$ on X; then covering number $\mathbf{cov}(\mathfrak I) = \text{least cardinal of family } \mathfrak B \subseteq \mathfrak I \text{ with } \cup \mathfrak B = X$

Theorem (N-P-S)

$$\mathfrak{F}(L_1(\mathcal{C})) \geq \aleph_1$$
 and $\mathfrak{F}(c_0)) = \mathfrak{d}_1 \geq \aleph_1$

Here, dominating number $\mathfrak{d}_1 = \text{least cardinal of } \mathcal{D} \subseteq \mathcal{L}_1 := \{ f \in [0,1)^{\mathbb{N}} \mid \|f\|_1 \leq 1 \} \text{ s.t. } \forall f \in \mathcal{L}_1 \; \exists d \in \mathcal{D} \text{ with } f \leq d \}$

- Ghahramani-Lau Conjecture: Solution via Factorization
- **Excursion 1: Set Theory**
- 3 Excursion 2: Quantum Groups
- Johnson's Problem: (Non-)Amenability of $\mathcal{B}(E)$

Background

Definition

Hopf-von Neumann algebra (M, Γ)

- M von Neumann algebra
- $\Gamma: M \to M \bar{\otimes} M$ co-multiplication

Background

Definition

Hopf-von Neumann algebra (M, Γ)

- M von Neumann algebra
- $\Gamma: M \to M \bar{\otimes} M$ co-multiplication

Examples

• $M = L_{\infty}(G) = L_1(G)^*$

 Γ = adjoint of convolution product *

Background

Definition

Hopf-von Neumann algebra (M, Γ)

- M von Neumann algebra
- $\Gamma: M \to M \bar{\otimes} M$ co-multiplication

Examples

- $M = L_{\infty}(G) = L_1(G)^*$
 - $\Gamma = adjoint of convolution product *$
- $M = \mathcal{L}(G) = A(G)^*$
 - Γ = adjoint of pointwise product •

Locally compact quantum groups

Locally compact quantum groups

Non-commutative integration

Ns.f. weight
$$\lambda: M^+ \to [0, \infty]$$

 $M_{\lambda} := \text{lin } \{ x \in M^+ \mid \lambda(x) < \infty \}$

Non-commutative integration

Ns.f. weight
$$\lambda : M^+ \to [0, \infty]$$

 $M_{\lambda} := \lim \{ x \in M^+ \mid \lambda(x) < \infty \}$

Definition (Kustermans-Vaes '00)

LC Quantum Group $\mathbb{G} = (M, \Gamma, \lambda, \rho)$

• λ left Haar weight on M:

$$\lambda((f \otimes Id)\Gamma x) = \langle f, 1 \rangle \lambda(x) \quad \forall f \in M_*, x \in M_{\lambda}$$

Locally compact quantum groups

Non-commutative integration

Ns.f. weight
$$\lambda : M^+ \to [0, \infty]$$

 $M_{\lambda} := \lim \{ x \in M^+ \mid \lambda(x) < \infty \}$

Definition (Kustermans-Vaes '00)

LC Quantum Group $\mathbb{G} = (M, \Gamma, \lambda, \rho)$

• λ left Haar weight on M:

$$\lambda((f \otimes Id)\Gamma x) = \langle f, 1 \rangle \lambda(x) \quad \forall f \in M_*, x \in M_{\lambda}$$

• ρ right Haar weight on M:

$$\rho((Id \otimes f)\Gamma x) = \langle f, 1 \rangle \rho(x) \qquad \forall f \in M_*, x \in M_0$$

Excursion 1: Set Theory

Non-commutative integration

Ns.f. weight $\lambda: M^+ \to [0, \infty]$ $M_{\lambda} := \lim \{ x \in M^+ \mid \lambda(x) < \infty \}$

Definition (Kustermans-Vaes '00)

LC Quantum Group $\mathbb{G} = (M, \Gamma, \lambda, \rho)$

• λ left Haar weight on M:

$$\lambda((f \otimes Id)\Gamma x) = \langle f, 1 \rangle \lambda(x) \quad \forall f \in M_*, x \in M_{\lambda}$$

• ρ right Haar weight on M:

$$\rho((Id \otimes f)\Gamma x) = \langle f, 1 \rangle \rho(x) \qquad \forall \ f \in M_* \ , \ x \in M_{\rho}$$

Theorem (Kustermans–Vaes '00)

"Pontryagin duality"

Algebras and spaces over quantum groups

Algebras and spaces over quantum groups

$$L_{\infty}(\mathbb{G}) := M$$
 $L_{1}(\mathbb{G}) := M_{*}$ $L_{2}(\mathbb{G}) := L_{2}(M, \lambda)$

$$\overline{L_1(\mathbb{G})}$$
 Banach algebra via $f*g = \Gamma_*(f\otimes g)$

$$L_{\infty}(\mathbb{G}) := M$$
 $L_{1}(\mathbb{G}) := M_{*}$ $L_{2}(\mathbb{G}) := L_{2}(M, \lambda)$

$$\overline{L_1(\mathbb{G})}$$
 Banach algebra via $f*g = \Gamma_*(f\otimes g)$

$$C_0(\mathbb{G}) := \overline{\{ (id \otimes \tau)(W) \mid \tau \in \mathcal{T}(L_2(\mathbb{G})) \}}^{\|\cdot\|}$$

where W left fundamental unitary: $\Gamma(x) = W^*(1 \otimes x)W$ \rightsquigarrow quantum measure algebra $\mathbf{M}(\mathbb{G}) = C_0(\mathbb{G})^*$

Uniform continuity

Uniform continuity

G LC group. Then $f \in L_{\infty}(G)$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \ \exists U \in \mathfrak{U}(e) \ \text{s.t.}$

$$\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$$

By Cohen: $LUC(G) = L_{\infty}(G) * L_1(G)$

G LC group. Then $f \in L_{\infty}(G)$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \ \exists U \in \mathfrak{U}(e) \ \text{s.t.}$

$$\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$$

By Cohen: $LUC(G) = L_{\infty}(G) * L_1(G)$

Definition

 \mathbb{G} LC quantum group. Then LUC(\mathbb{G}) := $\overline{\lim} L_{\infty}(G) * L_1(G)$

G LC group. Then $f \in L_{\infty}(G)$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \ \exists U \in \mathfrak{U}(e)$ s.t.

$$\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$$

By Cohen: $LUC(G) = L_{\infty}(G) * L_1(G)$

Definition

 \mathbb{G} LC quantum group. Then LUC(\mathbb{G}) := $\overline{\lim}\ L_{\infty}(G)*L_1(G)$

If \mathbb{G} is co-amenable: $LUC(\mathbb{G}) = L_{\infty}(G) * L_1(G)$

Uniform continuity

G LC group. Then $f \in L_{\infty}(G)$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \; \exists U \in \mathfrak{U}(e) \; \text{s.t.}$

$$\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$$

By Cohen: $LUC(G) = L_{\infty}(G) * L_1(G)$

Definition

 \mathbb{G} LC quantum group. Then LUC(\mathbb{G}) := $\overline{\lim} L_{\infty}(G) * L_1(G)$

If \mathbb{G} is co-amenable: LUC(\mathbb{G}) = $L_{\infty}(G) * L_1(G)$

What about equi uniform continuity?

G LC group. Then $f \in L_{\infty}(G)$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \; \exists U \in \mathfrak{U}(e) \; \text{s.t.}$

$$\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$$

By Cohen: $LUC(G) = L_{\infty}(G) * L_1(G)$

Definition

 \mathbb{G} LC quantum group. Then LUC(\mathbb{G}) := $\overline{\lim} L_{\infty}(G) * L_1(G)$

If \mathbb{G} is co-amenable: LUC(\mathbb{G}) = $L_{\infty}(G) * L_1(G)$

Excursion 1: Set Theory

What about equi uniform continuity?

Recall: $(f_{\alpha}) \subseteq \mathbf{B_1}(\mathsf{LUC}(\mathbb{G}))$ is equi-LUC if $\forall \varepsilon > 0 \ \exists U \in \mathfrak{U}(e)$ s.t.

$$\|\ell_x f_\alpha - f_\alpha\|_{\infty} < \varepsilon \quad \forall x \in U \ \forall \alpha$$

Theorem (N-Pachl-Salmi)

G LC group. For bounded $(f_{\alpha}) \subseteq LUC(G)$ *TFAE:*

- (f_{α}) is equi-LUC
- $\exists g \in L_1(G) \ \exists \ bounded \ (h_\alpha) \subseteq LUC(G) \ s.t. \ f_\alpha = h_\alpha * g$

Theorem (N-Pachl-Salmi)

G LC group. For bounded $(f_{\alpha}) \subseteq LUC(G)$ *TFAE:*

- (f_{α}) is equi-LUC
- $\exists g \in L_1(G) \ \exists \ bounded \ (h_\alpha) \subseteq LUC(G) \ s.t. \ f_\alpha = h_\alpha * g$

Proof.

• *G* non-compact

Then (N): $B_1(LUC(G)) = B_1(LUC(G)^*) \square B_1(LUC(G))$. Now:

$$f_{\alpha} = \psi_{\alpha} \Box f = \psi_{\alpha} \Box (h * g) = (\psi_{\alpha} \Box h) * g = h_{\alpha} * g.$$

Theorem (N-Pachl-Salmi)

G LC group. For bounded $(f_{\alpha}) \subseteq LUC(G)$ *TFAE:*

- (f_{α}) is equi-LUC
- $\exists g \in L_1(G) \ \exists \ bounded \ (h_\alpha) \subseteq LUC(G) \ s.t. \ f_\alpha = h_\alpha * g$

Proof.

• *G* non-compact

Then (N): $B_1(LUC(G)) = B_1(LUC(G)^*) \square B_1(LUC(G))$. Now:

$$f_{\alpha} = \psi_{\alpha} \Box f = \psi_{\alpha} \Box (h * g) = (\psi_{\alpha} \Box h) * g = h_{\alpha} * g.$$

• G compact

General result: \mathcal{A} Banach algebra with BAI for action on Banach A-module X; if $K \subseteq X$ norm-compact, then $\exists a \in \mathcal{A}$ s.t. $K \subseteq X * a$. Apply this with $\mathcal{A} = L_1(G), \ X = \mathsf{LUC}(G), \ K = \overline{\{f_\alpha\}}$.

Definition (N-Pachl-Salmi)

• Bounded $(f_{\alpha}) \subseteq LUC(\mathbb{G})$ is equi-LUC \Leftrightarrow $\exists g \in L_1(\mathbb{G}) \exists \text{ bounded } (h_{\alpha}) \subseteq LUC(\mathbb{G}) \text{ s.t. } f_{\alpha} = h_{\alpha} * g$

Definition (N-Pachl-Salmi)

- Bounded $(f_{\alpha}) \subseteq \mathsf{LUC}(\mathbb{G})$ is equi-LUC \Leftrightarrow $\exists g \in L_1(\mathbb{G}) \ \exists \ \mathsf{bounded} \ (h_{\alpha}) \subseteq \mathsf{LUC}(\mathbb{G}) \ \mathsf{s.t.} \ f_{\alpha} = h_{\alpha} * g$
- $m \in LUC(\mathbb{G})^*$ is uniform measure, written $m \in U(\mathbb{G}) \Leftrightarrow \forall (f_{\alpha})$ equi-LUC with $f_{\alpha} \to 0$ (w^*) we have $\langle m, f_{\alpha} \rangle \to 0$

Definition (N-Pachl-Salmi)

- Bounded $(f_{\alpha}) \subseteq \mathsf{LUC}(\mathbb{G})$ is equi-LUC \Leftrightarrow $\exists g \in L_1(\mathbb{G}) \ \exists \ \mathsf{bounded} \ (h_{\alpha}) \subseteq \mathsf{LUC}(\mathbb{G}) \ \mathsf{s.t.} \ f_{\alpha} = h_{\alpha} * g$
- $m \in LUC(\mathbb{G})^*$ is uniform measure, written $m \in U(\mathbb{G}) \Leftrightarrow \forall (f_{\alpha})$ equi-LUC with $f_{\alpha} \to 0$ (w^*) we have $\langle m, f_{\alpha} \rangle \to 0$

Theorem (Berezanskii '68)

G LC group. Then $U(L_{\infty}(G)) = \mathbf{M}(G)$.

Equi-LUC and uniform measures

Definition (N-Pachl-Salmi)

- Bounded $(f_{\alpha}) \subseteq \mathsf{LUC}(\mathbb{G})$ is equi-LUC \Leftrightarrow $\exists g \in L_1(\mathbb{G}) \ \exists \ \mathsf{bounded} \ (h_{\alpha}) \subseteq \mathsf{LUC}(\mathbb{G}) \ \mathsf{s.t.} \ f_{\alpha} = h_{\alpha} * g$
- $m \in LUC(\mathbb{G})^*$ is uniform measure, written $m \in U(\mathbb{G}) \Leftrightarrow \forall (f_{\alpha})$ equi-LUC with $f_{\alpha} \to 0$ (w^*) we have $\langle m, f_{\alpha} \rangle \to 0$

Theorem (Berezanskii '68)

G LC group. Then $U(L_{\infty}(G)) = \mathbf{M}(G)$.

Theorem (N-Pachl-Salmi)

 \mathbb{G} co-amenable LC quantum group. Then $U(\mathbb{G}) = \mathbf{M}(\mathbb{G})$.

Commercial Break 2

J. Pachl

Uniform Spaces and Measures

Fields Institute Monographs (2012)

2 Excursion 1: Set Theory

3 Excursion 2: Quantum Groups

4 Johnson's Problem: (Non-)Amenability of $\mathcal{B}(E)$

Problem (Johnson '72)

Given (inf.-dim.) Banach space E, determine if the Banach algebra $\mathcal{B}(E)$ is amenable.

Problem (Johnson '72)

Given (inf.-dim.) Banach space E, determine if the Banach algebra $\mathcal{B}(E)$ is amenable.

Theorem

 $\mathcal{B}(E)$ is non-amenable in the following cases:

• (Connes, Wassermann '78) $E = \ell_2$

Problem (Johnson '72)

Given (inf.-dim.) Banach space E, determine if the Banach algebra $\mathcal{B}(E)$ is amenable.

Theorem

 $\mathcal{B}(E)$ is non-amenable in the following cases:

Excursion 1: Set Theory

- (Connes, Wassermann '78) $E = \ell_2$
- (Read '01) $E = \ell_1$

Problem (Johnson '72)

Given (inf.-dim.) Banach space E, determine if the Banach algebra $\mathcal{B}(E)$ is amenable.

Theorem

 $\mathcal{B}(E)$ is non-amenable in the following cases:

- (Connes, Wassermann '78) $E = \ell_2$
- (Read '01) $E = \ell_1$
- (Pisier '04) different proof for Read's result

Problem (Johnson '72)

Given (inf.-dim.) Banach space E, determine if the Banach algebra $\mathcal{B}(E)$ is amenable.

Theorem

 $\mathcal{B}(E)$ is non-amenable in the following cases:

- (Connes, Wassermann '78) $E = \ell_2$
- (Read '01) $E = \ell_1$
- (Pisier '04) different proof for Read's result
- (Ozawa '04) $E=\ell_1$, ℓ_2 , or ℓ_∞ through one proof

Problem (Johnson '72)

Given (inf.-dim.) Banach space E, determine if the Banach algebra $\mathcal{B}(E)$ is amenable.

Theorem

 $\mathcal{B}(E)$ is non-amenable in the following cases:

- (Connes, Wassermann '78) $E = \ell_2$
- (Read '01) $E = \ell_1$
- (Pisier '04) different proof for Read's result

Excursion 1: Set Theory

- (Ozawa '04) $E = \ell_1, \, \ell_2, \, \text{or} \, \ell_\infty \, \text{through one proof}$
- (Runde '09) $E = \ell_p$ for $p \in (1, \infty)$

Problem (Johnson '72)

Given (inf.-dim.) Banach space E, determine if the Banach algebra $\mathcal{B}(E)$ is amenable.

Theorem

 $\mathcal{B}(E)$ is non-amenable in the following cases:

- (Connes, Wassermann '78) $E = \ell_2$
- (Read '01) $E = \ell_1$
- (Pisier '04) different proof for Read's result
- (Ozawa '04) $E=\ell_1$, ℓ_2 , or ℓ_∞ through one proof
- (Runde '09) $E = \ell_p$ for $p \in (1, \infty)$
- (Argyros–Haydon '09) $\exists E \text{ s.t. } \mathcal{B}(E)$ amenable

Theorem (N-Poulin)

If X is not complemented in X^{**} then $\mathcal{B}(X^{**})$ is non-amenable.

Theorem (N-Poulin)

If X is not complemented in X^{**} then $\mathcal{B}(X^{**})$ is non-amenable.

Suppose $\mathcal{B}(X^{**})$ amenable. We have

$$\mathcal{B}(X^{**}) = \{ T^* \mid T \in \mathcal{B}(X^*) \} \oplus \mathsf{Ann}(X).$$

Theorem (N-Poulin)

If X is not complemented in X^{**} then $\mathcal{B}(X^{**})$ is non-amenable.

Suppose $\mathcal{B}(X^{**})$ amenable. We have

$$\mathcal{B}(X^{**}) = \{ T^* \mid T \in \mathcal{B}(X^*) \} \oplus \mathsf{Ann}(X).$$

Note: First projection is $T \mapsto (T^* \mid_{X^*})^* \mid_{X^{**}}$

Theorem (N-Poulin)

If X is not complemented in X^{**} then $\mathcal{B}(X^{**})$ is non-amenable.

Suppose $\mathcal{B}(X^{**})$ amenable. We have

$$\mathcal{B}(X^{**}) = \{ T^* \mid T \in \mathcal{B}(X^*) \} \oplus \mathsf{Ann}(X).$$

Note: First projection is $T \mapsto (T^* \mid_{X^*})^* \mid_{X^{**}}$

Then $\operatorname{Ann}(X)$ is a complemented left ideal, so (Helemskiĭ '84) it has a BRAI e_{α} . Let $F \in \operatorname{Ann}(X)^{**}$ be a weak*-cluster point of e_{α} . Then F is a right identity in $\operatorname{Ann}(X)^{**}$ (w.r.t. the left Arens product).

Consider $\kappa: X^{**} \otimes_{\pi} X^* \hookrightarrow B(X^{**})^*$.

Consider $\kappa: X^{**} \otimes_{\pi} X^* \hookrightarrow B(X^{**})^*$.

Then κ^* is a $B(X^{**})$ -bimodule map, and the identity on $B(X^{**})$.

Put $E := \kappa^*(F) \in B(X^{**})$. For all $T \in Ann(X)$:

$$TE = T\kappa^*(F) = \kappa^*(T\Box F) = \kappa^*(T) = T.$$

Consider $\kappa: X^{**} \otimes_{\pi} X^* \hookrightarrow B(X^{**})^*$.

Then κ^* is a $B(X^{**})$ -bimodule map, and the identity on $B(X^{**})$.

Put $E := \kappa^*(F) \in B(X^{**})$. For all $T \in Ann(X)$:

$$TE = T\kappa^*(F) = \kappa^*(T\Box F) = \kappa^*(T) = T.$$

But $E \in Ann(X)$ because for all $h \in X$, $g \in X^*$:

$$\langle E(h), g \rangle = \langle F, \kappa(h \otimes g) \rangle = \lim_{\alpha} \langle e_{\alpha}(h), g \rangle = 0$$

since $e_{\alpha} \mid_{X} = 0$. Hence, E is a right identity in Ann(X).

Then κ^* is a $B(X^{**})$ -bimodule map, and the identity on $B(X^{**})$.

Put $E := \kappa^*(F) \in B(X^{**})$. For all $T \in Ann(X)$:

$$TE = T\kappa^*(F) = \kappa^*(T\Box F) = \kappa^*(T) = T.$$

But $E \in Ann(X)$ because for all $h \in X$, $g \in X^*$:

$$\langle E(h), g \rangle = \langle F, \kappa(h \otimes g) \rangle = \lim_{\alpha} \langle e_{\alpha}(h), g \rangle = 0$$

since $e_{\alpha} \mid_{X} = 0$. Hence, E is a right identity in Ann(X). Fix $0 \neq z \in X^{**}$. For $m \in X^{***}$, define $T_m \in \mathcal{B}(X^{**})$ by $T_m(h) = \langle m, h \rangle z$.

Then κ^* is a $B(X^{**})$ -bimodule map, and the identity on $B(X^{**})$.

Put $E := \kappa^*(F) \in B(X^{**})$. For all $T \in Ann(X)$:

Excursion 1: Set Theory

$$TE = T\kappa^*(F) = \kappa^*(T\Box F) = \kappa^*(T) = T.$$

But $E \in Ann(X)$ because for all $h \in X$, $g \in X^*$:

$$\langle E(h), g \rangle = \langle F, \kappa(h \otimes g) \rangle = \lim_{\alpha} \langle e_{\alpha}(h), g \rangle = 0$$

since $e_{\alpha}|_{X}=0$. Hence, E is a right identity in Ann(X).

Fix $0 \neq z \in X^{**}$. For $m \in X^{***}$, define $T_m \in \mathcal{B}(X^{**})$ by

 $T_m(h) = \langle m, h \rangle z$.

Let $m \in X^{\perp}$; then $T_m \in Ann(X)$.

Then κ^* is a $B(X^{**})$ -bimodule map, and the identity on $B(X^{**})$.

Put $E := \kappa^*(F) \in B(X^{**})$. For all $T \in Ann(X)$:

$$TE = T\kappa^*(F) = \kappa^*(T\Box F) = \kappa^*(T) = T.$$

But $E \in Ann(X)$ because for all $h \in X$, $g \in X^*$:

$$\langle E(h), g \rangle = \langle F, \kappa(h \otimes g) \rangle = \lim_{\alpha} \langle e_{\alpha}(h), g \rangle = 0$$

since $e_{\alpha} \mid_{X} = 0$. Hence, E is a right identity in Ann(X).

Fix $0 \neq z \in X^{**}$. For $m \in X^{***}$, define $T_m \in \mathcal{B}(X^{**})$ by $T_m(h) = \langle m, h \rangle z$.

 $I_{m}(H) = \langle H, H/2.$ Let $m \in Y^{\perp}$: then $T \in Ann(Y)$. So for all

Let $m \in X^{\perp}$; then $T_m \in Ann(X)$. So, for all $h \in X^{**}$:

$$\langle m, h \rangle z = T_m(h) = T_m(E(h)) = \langle m, E(h) \rangle z = \langle E^*(m), h \rangle z.$$

Then κ^* is a $B(X^{**})$ -bimodule map, and the identity on $B(X^{**})$.

Put $E := \kappa^*(F) \in B(X^{**})$. For all $T \in Ann(X)$:

$$TE = T\kappa^*(F) = \kappa^*(T\Box F) = \kappa^*(T) = T.$$

But $E \in Ann(X)$ because for all $h \in X$, $g \in X^*$:

$$\langle E(h), g \rangle = \langle F, \kappa(h \otimes g) \rangle = \lim_{\alpha} \langle e_{\alpha}(h), g \rangle = 0$$

since $e_{\alpha} \mid_{X} = 0$. Hence, *E* is a right identity in Ann(*X*).

Fix $0 \neq z \in X^{**}$. For $m \in X^{***}$, define $T_m \in \mathcal{B}(X^{**})$ by $T_m(h) = \langle m, h \rangle z$.

Let $m \in X^{\perp}$; then $T_m \in Ann(X)$. So, for all $h \in X^{**}$:

$$\langle m, h \rangle z = T_m(h) = T_m(E(h)) = \langle m, E(h) \rangle z = \langle E^*(m), h \rangle z.$$

Thus, $E^*(m) = m$ for all $m \in X^{\perp}$.

Consider $Id - E^* \in \mathcal{B}(X^{***})$. Then $Ker(Id - E^*) \supseteq X^{\perp}$.

Consider $Id - E^* \in \mathcal{B}(X^{***})$. Then $Ker(Id - E^*) \supseteq X^{\perp}$.

Claim: $Ker(Id - E^*) = X^{\perp}$.

Consider $Id - E^* \in \mathcal{B}(X^{***})$. Then $Ker(Id - E^*) \supseteq X^{\perp}$.

Claim: $Ker(Id - E^*) = X^{\perp}$.

Let $m \in \text{Ker}(Id - E^*)$. Since $m \in X^{***}$, we have $m = m_1 + m_0$ with $m_1 \in X^*$ and $m_0 \in X^{\perp}$.

Consider $Id - E^* \in \mathcal{B}(X^{***})$. Then $Ker(Id - E^*) \supseteq X^{\perp}$.

Claim: $Ker(Id - E^*) = X^{\perp}$.

Let $m \in \text{Ker}(Id - E^*)$. Since $m \in X^{***}$, we have $m = m_1 + m_0$ with $m_1 \in X^*$ and $m_0 \in X^{\perp}$. Since $(Id - E^*)(m) = 0$,

$$m_1 + m_0 = m = E^*(m) = E^*(m_1) + m_0.$$

Consider $Id - E^* \in \mathcal{B}(X^{***})$. Then $Ker(Id - E^*) \supset X^{\perp}$.

Excursion 1: Set Theory

Claim: Ker($Id - E^*$) = X^{\perp} .

Let $m \in \text{Ker}(Id - E^*)$. Since $m \in X^{***}$, we have $m = m_1 + m_0$ with $m_1 \in X^*$ and $m_0 \in X^{\perp}$. Since $(Id - E^*)(m) = 0$.

$$m_1 + m_0 = m = E^*(m) = E^*(m_1) + m_0.$$

Hence, $m_1 = E^*(m_1)$. But $Im(E^*) \subset X^{\perp}$ since $E \in Ann(X)$.

Consider $Id - E^* \in \mathcal{B}(X^{***})$. Then $Ker(Id - E^*) \supseteq X^{\perp}$.

Claim: $Ker(Id - E^*) = X^{\perp}$.

Let $m \in \text{Ker}(Id - E^*)$. Since $m \in X^{***}$, we have $m = m_1 + m_0$ with $m_1 \in X^*$ and $m_0 \in X^{\perp}$. Since $(Id - E^*)(m) = 0$,

$$m_1 + m_0 = m = E^*(m) = E^*(m_1) + m_0.$$

Hence, $m_1 = E^*(m_1)$. But $Im(E^*) \subseteq X^{\perp}$ since $E \in Ann(X)$. So, $m_1 \in X^* \cap X^{\perp} = 0$. Thus $m = m_0 \in X^{\perp}$, proving the Claim.

Consider $Id - E^* \in \mathcal{B}(X^{***})$. Then $Ker(Id - E^*) \supset X^{\perp}$.

Excursion 1: Set Theory

Claim: Ker($Id - E^*$) = X^{\perp} .

Let $m \in \text{Ker}(Id - E^*)$. Since $m \in X^{***}$, we have $m = m_1 + m_0$ with $m_1 \in X^*$ and $m_0 \in X^{\perp}$. Since $(Id - E^*)(m) = 0$.

$$m_1 + m_0 = m = E^*(m) = E^*(m_1) + m_0.$$

Hence, $m_1 = E^*(m_1)$. But $Im(E^*) \subseteq X^{\perp}$ since $E \in Ann(X)$. So, $m_1 \in X^* \cap X^{\perp} = 0$. Thus $m = m_0 \in X^{\perp}$, proving the Claim.

Note that E is a projection (being a right identity of Ann(X)).

Consider $Id - E^* \in \mathcal{B}(X^{***})$. Then $Ker(Id - E^*) \supseteq X^{\perp}$.

Claim: $Ker(Id - E^*) = X^{\perp}$.

Let $m \in \text{Ker}(Id - E^*)$. Since $m \in X^{***}$, we have $m = m_1 + m_0$ with $m_1 \in X^*$ and $m_0 \in X^{\perp}$. Since $(Id - E^*)(m) = 0$,

$$m_1 + m_0 = m = E^*(m) = E^*(m_1) + m_0.$$

Hence, $m_1 = E^*(m_1)$. But $Im(E^*) \subseteq X^{\perp}$ since $E \in Ann(X)$. So, $m_1 \in X^* \cap X^{\perp} = 0$. Thus $m = m_0 \in X^{\perp}$, proving the Claim.

Note that E is a projection (being a right identity of Ann(X)). Now,

$$X = (X^{\perp})_{\perp} = \operatorname{\mathsf{Ker}}(\operatorname{\mathsf{Id}} - E^*)_{\perp} = (\operatorname{\mathsf{Im}}(\operatorname{\mathsf{Id}} - E)^{\perp})_{\perp} = \operatorname{\mathsf{Im}}(\operatorname{\mathsf{Id}} - E).$$

Consider $Id - E^* \in \mathcal{B}(X^{***})$. Then $Ker(Id - E^*) \supseteq X^{\perp}$.

Claim: Ker($Id - E^*$) = X^{\perp} .

Let $m \in \text{Ker}(Id - E^*)$. Since $m \in X^{***}$, we have $m = m_1 + m_0$ with $m_1 \in X^*$ and $m_0 \in X^{\perp}$. Since $(Id - E^*)(m) = 0$.

$$m_1 + m_0 = m = E^*(m) = E^*(m_1) + m_0.$$

Hence, $m_1 = E^*(m_1)$. But $Im(E^*) \subseteq X^{\perp}$ since $E \in Ann(X)$. So, $m_1 \in X^* \cap X^{\perp} = 0$. Thus $m = m_0 \in X^{\perp}$, proving the Claim.

Note that E is a projection (being a right identity of Ann(X)). Now.

$$X = (X^{\perp})_{\perp} = \text{Ker}(Id - E^*)_{\perp} = (\text{Im}(Id - E)^{\perp})_{\perp} = \text{Im}(Id - E).$$

So, X is complemented in X^{**} – contradiction. \square

Corollary

Let \mathcal{M} be an inf.-dim. atomic vN algebra (= direct sum of type I factors). Then $\mathcal{B}(\mathcal{M})$ is non-amenable.

Corollary

Let \mathcal{M} be an inf.-dim. atomic vN algebra (= direct sum of type I factors). Then $\mathcal{B}(\mathcal{M})$ is non-amenable.

Proof.

 \mathcal{M} atomic $\Rightarrow \mathcal{M} = \mathcal{A}^{**}$ with $\mathcal{A} = c_0 - \sum_{i \in I} \mathcal{K}(H_i)$ for Hilbert spaces H_i .

Corollary

Let \mathcal{M} be an inf.-dim. atomic vN algebra (= direct sum of type I factors). Then $\mathcal{B}(\mathcal{M})$ is non-amenable.

Proof.

 \mathcal{M} atomic $\Rightarrow \mathcal{M} = \mathcal{A}^{**}$ with $\mathcal{A} = c_0 - \sum_{i \in I} \mathcal{K}(H_i)$ for Hilbert spaces H_i . Now Taylor's non-commutative Phillips theorem (1972) yields that \mathcal{A} is not complemented in \mathcal{A}^{**} .

Non-Amenability of $\mathcal{B}(\mathcal{M})$

Corollary

Let \mathcal{M} be an inf.-dim. atomic vN algebra (= direct sum of type I factors). Then $\mathcal{B}(\mathcal{M})$ is non-amenable.

Proof.

 \mathcal{M} atomic $\Rightarrow \mathcal{M} = \mathcal{A}^{**}$ with $\mathcal{A} = c_0 - \sum_{i \in I} \mathcal{K}(H_i)$ for Hilbert spaces H_i . Now Taylor's non-commutative Phillips theorem (1972) yields that \mathcal{A} is not complemented in \mathcal{A}^{**} .

Corollary

 $\mathcal{B}(\mathcal{M})$ is non-amenable in the following cases:

- $\mathcal{M} = \ell_{\infty}(I)$ for infinite I
- $\mathcal{M} = L_{\infty}(\mathbb{G})$ for any inf. discrete quantum group \mathbb{G} , in particular $\mathcal{M} = VN(G)$ for G compact
- $\mathcal{M} = \mathcal{B}(H)$ for any inf.-dim. Hilbert space H

Recall: \mathcal{A} amenable $\Leftrightarrow \exists$ approximate diagonal, i.e., bounded $(m_{\alpha}) \subseteq \mathcal{A} \otimes_{\pi} \mathcal{A}$ s.t.

$$a\cdot m_{lpha}-m_{lpha}\cdot a o 0$$
 and $a\Delta(m_{lpha}) o a$ $(a\in \mathcal{A})$

Recall: \mathcal{A} amenable $\Leftrightarrow \exists$ approximate diagonal, i.e., bounded $(m_{\alpha}) \subseteq \mathcal{A} \otimes_{\pi} \mathcal{A}$ s.t.

$$a \cdot m_{\alpha} - m_{\alpha} \cdot a \to 0$$
 and $a\Delta(m_{\alpha}) \to a$ $(a \in A)$

Theorem (N-Poulin)

Let \mathcal{M} be a vN algebra with separable predual. Then $\mathcal{B}(\mathcal{M})$ does not have a countable approximate diagonal.

Recall: \mathcal{A} amenable $\Leftrightarrow \exists$ approximate diagonal, i.e., bounded $(m_{\alpha}) \subseteq \mathcal{A} \otimes_{\pi} \mathcal{A}$ s.t.

$$a \cdot m_{\alpha} - m_{\alpha} \cdot a \to 0$$
 and $a\Delta(m_{\alpha}) \to a$ $(a \in \mathcal{A})$

Theorem (N-Poulin)

Let \mathcal{M} be a vN algebra with separable predual. Then $\mathcal{B}(\mathcal{M})$ does not have a countable approximate diagonal.

<u>NB:</u> Our results also hold in the category of operator spaces and cb maps.

$$\mathcal{M}^* = \mathcal{M}_* \oplus \mathcal{M}_s$$
$$\ell_{\infty}^* = \ell_1 \oplus c_0^{\perp}$$
$$\mathcal{B}(H)^* = \mathcal{T}(H) \oplus \mathcal{K}(H)^{\perp}$$

$$\mathcal{M}^* = \mathcal{M}_* \oplus \mathcal{M}_s$$
$$\ell_{\infty}^* = \ell_1 \oplus c_0^{\perp}$$
$$\mathcal{B}(H)^* = \mathcal{T}(H) \oplus \mathcal{K}(H)^{\perp}$$

Recall: $\mathcal{B}(\mathcal{M}) = \mathcal{B}^{\sigma}(\mathcal{M}) \oplus \mathcal{B}^{s}(\mathcal{M})$ where

- $T \in \mathcal{B}^{\sigma}(\mathcal{M})$ normal : $\Leftrightarrow T^*(\mathcal{M}_*) \subseteq \mathcal{M}_*$
- $T \in \mathcal{B}^s(\mathcal{M})$ singular : $\Leftrightarrow T^*(\mathcal{M}_*) \subseteq \mathcal{M}_s$

$$\mathcal{M}^* = \mathcal{M}_* \oplus \mathcal{M}_s$$
 $\ell_{\infty}^* = \ell_1 \oplus c_0^{\perp}$
 $\mathcal{B}(H)^* = \mathcal{T}(H) \oplus \mathcal{K}(H)^{\perp}$

Recall: $\mathcal{B}(\mathcal{M}) = \mathcal{B}^{\sigma}(\mathcal{M}) \oplus \mathcal{B}^{s}(\mathcal{M})$ where

- $T \in \mathcal{B}^{\sigma}(\mathcal{M})$ normal : $\Leftrightarrow T^*(\mathcal{M}_*) \subseteq \mathcal{M}_*$
- $T \in \mathcal{B}^s(\mathcal{M})$ singular : $\Leftrightarrow T^*(\mathcal{M}_*) \subseteq \mathcal{M}_s$

First projection is $T \mapsto (T^* \mid_{\mathcal{M}_*})^* \mid_{\mathcal{M}}$

$$\mathcal{M}^* = \mathcal{M}_* \oplus \mathcal{M}_s$$

 $\ell_{\infty}^* = \ell_1 \oplus c_0^{\perp}$
 $\mathcal{B}(H)^* = \mathcal{T}(H) \oplus \mathcal{K}(H)^{\perp}$

Recall: $\mathcal{B}(\mathcal{M}) = \mathcal{B}^{\sigma}(\mathcal{M}) \oplus \mathcal{B}^{s}(\mathcal{M})$ where

- $T \in \mathcal{B}^{\sigma}(\mathcal{M})$ normal : $\Leftrightarrow T^*(\mathcal{M}_*) \subseteq \mathcal{M}_*$
- $T \in \mathcal{B}^s(\mathcal{M})$ singular : $\Leftrightarrow T^*(\mathcal{M}_*) \subseteq \mathcal{M}_s$

First projection is $T \mapsto (T^* \mid_{\mathcal{M}_*})^* \mid_{\mathcal{M}}$

Lemma

Assume \mathcal{M}_* separable. Then: $T \in \mathcal{B}^s(\mathcal{M}) \Leftrightarrow T^*(\mathcal{M}^*) \subseteq \mathcal{M}_s$.

$$\mathcal{M}^* = \mathcal{M}_* \oplus \mathcal{M}_s$$

 $\ell_{\infty}^* = \ell_1 \oplus c_0^{\perp}$
 $\mathcal{B}(H)^* = \mathcal{T}(H) \oplus \mathcal{K}(H)^{\perp}$

Recall: $\mathcal{B}(\mathcal{M}) = \mathcal{B}^{\sigma}(\mathcal{M}) \oplus \mathcal{B}^{s}(\mathcal{M})$ where

- $T \in \mathcal{B}^{\sigma}(\mathcal{M})$ normal : $\Leftrightarrow T^*(\mathcal{M}_*) \subseteq \mathcal{M}_*$
- $T \in \mathcal{B}^s(\mathcal{M})$ singular : $\Leftrightarrow T^*(\mathcal{M}_*) \subseteq \mathcal{M}_s$

First projection is $T \mapsto (T^* \mid_{\mathcal{M}_*})^* \mid_{\mathcal{M}}$

Lemma

Assume \mathcal{M}_* separable. Then: $T \in \mathcal{B}^s(\mathcal{M}) \Leftrightarrow T^*(\mathcal{M}^*) \subseteq \mathcal{M}_s$.

Corollary

If \mathcal{M}_* is separable, $\mathcal{B}^s(\mathcal{M})$ is complemented left ideal in $\mathcal{B}(\mathcal{M})$.

Theorem (N-Poulin)

Let \mathcal{M} be an (inf.-dim.) vN algebra with separable predual. Then $\mathcal{B}(\mathcal{M})$ does not have a countable approximate diagonal.

Theorem (N–Poulin)

Let \mathcal{M} be an (inf.-dim.) vN algebra with separable predual. Then $\mathcal{B}(\mathcal{M})$ does not have a countable approximate diagonal.

Proof.

Suppose $\mathcal{B}(\mathcal{M})$ has a countable approximate diagonal. Now, $\mathcal{B}^s(\mathcal{M})$ is a left complemented ideal in $\mathcal{B}(\mathcal{M})$, so it has a countable BRAI.

Theorem (N–Poulin)

Let \mathcal{M} be an (inf.-dim.) vN algebra with separable predual. Then $\mathcal{B}(\mathcal{M})$ does not have a countable approximate diagonal.

Excursion 2: Quantum Groups

Proof.

Suppose $\mathcal{B}(\mathcal{M})$ has a countable approximate diagonal. Now, $\mathcal{B}^s(\mathcal{M})$ is a left complemented ideal in $\mathcal{B}(\mathcal{M})$, so it has a countable BRAI. Since $\mathcal{B}^s(\mathcal{M})$ is countably w^* -closed, one sees that it has a right identity E. Similarly to before, we obtain $Ker(Id - E^*) = M_s$, so M_* is isomorphic to $(Im(Id - E))^*$.

Theorem (N–Poulin)

Let \mathcal{M} be an (inf.-dim.) vN algebra with separable predual. Then $\mathcal{B}(\mathcal{M})$ does not have a countable approximate diagonal.

Excursion 2: Quantum Groups

Proof.

Suppose $\mathcal{B}(\mathcal{M})$ has a countable approximate diagonal. Now, $\mathcal{B}^s(\mathcal{M})$ is a left complemented ideal in $\mathcal{B}(\mathcal{M})$, so it has a countable BRAI. Since $\mathcal{B}^s(\mathcal{M})$ is countably w^* -closed, one sees that it has a right identity E. Similarly to before, we obtain $Ker(Id - E^*) = M_s$, so M_* is isomorphic to $(Im(Id - E))^*$.

 M_* separable \Rightarrow WCG. Recall: WCG dual spaces have RNP. WCG and RNP are properties stable under isomorphism, so we get that \mathcal{M}_* has the RNP. This is equivalent to \mathcal{M} being atomic (Chu '81).

Theorem (N–Poulin)

Let \mathcal{M} be an (inf.-dim.) vN algebra with separable predual. Then $\mathcal{B}(\mathcal{M})$ does not have a countable approximate diagonal.

Proof.

Suppose $\mathcal{B}(\mathcal{M})$ has a countable approximate diagonal. Now, $\mathcal{B}^s(\mathcal{M})$ is a left complemented ideal in $\mathcal{B}(\mathcal{M})$, so it has a countable BRAI. Since $\mathcal{B}^s(\mathcal{M})$ is countably w^* -closed, one sees that it has a right identity E. Similarly to before, we obtain $Ker(Id - E^*) = M_s$, so M_* is isomorphic to $(Im(Id - E))^*$.

 M_* separable \Rightarrow WCG. Recall: WCG dual spaces have RNP. WCG and RNP are properties stable under isomorphism, so we get that \mathcal{M}_* has the RNP. This is equivalent to \mathcal{M} being atomic (Chu '81). Our earlier theorem – $\mathcal{B}(\mathcal{M})$ not amenable for atomic \mathcal{M} – now gives a contradiction.