On Representations Subordinate to Topologically Introverted Spaces

Mehdi Monfared

University of Windsor

Joint Work with M. Filali and M. Neufang

• Given a Banach algebra A, the dual space A^* can be viewed as a Banach A-bimodule with the canonical operations:

$$\langle \lambda \cdot a, b \rangle = \langle \lambda, ab \rangle, \quad \langle a \cdot \lambda, b \rangle = \langle \lambda, ba \rangle,$$

where $\lambda \in A^*$ and $a, b \in A$.

• Given a Banach algebra A, the dual space A^* can be viewed as a Banach A-bimodule with the canonical operations:

$$\langle \lambda \cdot a, b \rangle = \langle \lambda, ab \rangle, \quad \langle a \cdot \lambda, b \rangle = \langle \lambda, ba \rangle,$$

where $\lambda \in A^*$ and $a, b \in A$.

• Let X be a norm closed A-submodule of A^* . For $\Psi \in X^*$ and $\lambda \in X$, define $\Psi \cdot \lambda \in A^*$ by

$$\langle \Psi \cdot \lambda, a \rangle = \langle \Psi, \lambda \cdot a \rangle.$$

If $\Psi \cdot \lambda \in X$ for all choices of $\Psi \in X^*$ and $\lambda \in X$, then X is called an introverted subspace of A^* . Lau and Loy (1997); Dales and Lau (2005) .

$$\langle \Phi \Box \Psi, \lambda \rangle = \langle \Phi, \Psi \cdot \lambda \rangle \qquad (\lambda \in X^*).$$

$$\langle \Phi \Box \Psi, \lambda \rangle = \langle \Phi, \Psi \cdot \lambda \rangle \qquad (\lambda \in X^*).$$

Examples

(i)
$$X = A^*$$
.

$$\langle \Phi \Box \Psi, \lambda \rangle = \langle \Phi, \Psi \cdot \lambda \rangle \qquad (\lambda \in X^*).$$

Examples

(i)
$$X = A^*$$
.

(ii)
$$X = LUC(A) = \overline{\lim (A^* \cdot A)}^{\|\cdot\|}$$
. If G is a locally compact group, then $LUC(L^1(G)) = LUC(G)$.

$$\langle \Phi \Box \Psi, \lambda \rangle = \langle \Phi, \Psi \cdot \lambda \rangle \qquad (\lambda \in X^*).$$

Examples

(i)
$$X = A^*$$
.

(ii)
$$X = LUC(A) = \overline{\lim (A^* \cdot A)}^{\|\cdot\|}$$
. If G is a locally compact group, then $LUC(L^1(G)) = LUC(G)$.

(iii)
$$X = WAP(A) = \{ \lambda \in A^* : \text{the linear map} \\ a \mapsto \lambda \cdot a, A \longrightarrow A^*, \text{ is weakly compact} \}.$$

• For more examples see: Granirer (1987), Dales (2000), Dales–Lau (2005).

Subordination

• Let E be a dual Banach space and $\mathcal{L}(E)$ be equipped with the W*OT. Given a continuous representation

$$\pi: A \longrightarrow \mathscr{L}(E),$$

and given $y \in E, \lambda \in E_*$, we define $\pi_{y,\lambda} \in A^*$ by

$$\pi_{y,\lambda}(a) = \langle \pi(a)y, \lambda \rangle \qquad (a \in A).$$

Subordination

• Let E be a dual Banach space and $\mathcal{L}(E)$ be equipped with the W*OT. Given a continuous representation

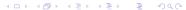
$$\pi: A \longrightarrow \mathscr{L}(E),$$

and given $y \in E, \lambda \in E_*$, we define $\pi_{y,\lambda} \in A^*$ by

$$\pi_{y,\lambda}(a) = \langle \pi(a)y, \lambda \rangle \qquad (a \in A).$$

• If $X \subset A^*$ is introverted, we say π is subordinate to X if

$$\pi_{\mathbf{v},\lambda} \in X$$
 $(\mathbf{y} \in \mathbf{E}, \lambda \in \mathbf{E}_*).$



Let G be a locally compact group and

$$W: G \longrightarrow \mathcal{L}(H)$$

be a unitary representation.

Let G be a locally compact group and

$$W: G \longrightarrow \mathscr{L}(H)$$

be a unitary representation. Consider

$$\pi : L^1(G) \longrightarrow \mathscr{L}(\mathscr{L}(H))$$

$$\pi(f)T = \int_G W(t)T W(t)^* f(t) d(t).$$

(i) π is an isometric representation of $L^1(G)$.

Let G be a locally compact group and

$$W: G \longrightarrow \mathscr{L}(H)$$

be a unitary representation. Consider

$$\pi \colon L^{1}(G) \longrightarrow \mathscr{L}(\mathscr{L}(H))$$

$$\pi(f)T = \int_{G} W(t)T W(t)^{*} f(t) d(t).$$

- (i) π is an isometric representation of $L^1(G)$.
- (ii) If $T \in \mathcal{L}(H)$, $T_* = \sum_{i=1}^{\infty} x_i \otimes y_i \in H \widehat{\otimes}_{\gamma} H = \mathcal{L}(H)_*$, then for almost all $t \in G$:

$$\pi_{T,T_*}(t) = \sum_i \langle T W(t)^* x_i | W(t)^* y_i \rangle.$$

Let G be a locally compact group and

$$W: G \longrightarrow \mathscr{L}(H)$$

be a unitary representation. Consider

$$\pi \colon L^1(G) \longrightarrow \mathscr{L}(\mathscr{L}(H))$$

$$\pi(f)T = \int_G W(t)T W(t)^* f(t) d(t).$$

- (i) π is an isometric representation of $L^1(G)$.
- (ii) If $T \in \mathcal{L}(H)$, $T_* = \sum_{i=1}^{\infty} x_i \otimes y_i \in H \widehat{\otimes}_{\gamma} H = \mathcal{L}(H)_*$, then for almost all $t \in G$:

$$\pi_{T,T_*}(t) = \sum_i \langle T W(t)^* x_i | W(t)^* y_i \rangle.$$

(iii) $\pi_{T,T^*} \in LUC(G)$, hence π subordinate to $LUC(L^1(G))$.

If

$$\pi: A \longrightarrow \mathscr{L}(E)$$

is a norm continuous representation on a reflexive Banach space E, then all coordinate functions of π are weakly almost periodic functionals on A; in other words, π is subordinate to WAP(A) (N. J. Young (1976)).

If

$$\pi: A \longrightarrow \mathscr{L}(E)$$

is a norm continuous representation on a reflexive Banach space E, then all coordinate functions of π are weakly almost periodic functionals on A; in other words, π is subordinate to WAP(A) (N. J. Young (1976)).

A Little Digression...

• Question: Is every $\lambda \in WAP(A)$ a coordinate function of some continuous representation of A on a reflexive Banach space?

If

$$\pi: A \longrightarrow \mathscr{L}(E)$$

is a norm continuous representation on a reflexive Banach space E, then all coordinate functions of π are weakly almost periodic functionals on A; in other words, π is subordinate to WAP(A) (N. J. Young (1976)).

A Little Digression...

• Question: Is every $\lambda \in WAP(A)$ a coordinate function of some continuous representation of A on a reflexive Banach space?

Yes, if A has a bounded approximate identity.

• Theorem (Daws (2007) Let A be a unital dual Banach algebra with a predual A_* . Then each norm one element $\mu \in A_*$ has an admissible norm.

• Theorem (Daws (2007) Let A be a unital dual Banach algebra with a predual A_* . Then each norm one element $\mu \in A_*$ has an admissible norm.

In other words, there exists a norm $\|\cdot\|_{\mu}$ on

$$\mathbf{A} \cdot \mu = \{ \mathbf{a} \cdot \mu \colon \mathbf{a} \in \mathbf{A} \}$$

such that the completion of $A\cdot \mu$ is a reflexive space E_μ , and the left module action of A on E_μ induces a w^* -continuous representation

$$\pi: A \longrightarrow \mathscr{L}(E_{\mu}).$$

Moreover, there exists $x \in E_{\mu}$ and $\lambda \in E_{\mu}^*$ such that

$$\mu = \pi_{X,\lambda}.$$

• Theorem (Daws (2007) Let A be a unital dual Banach algebra with a predual A_* . Then each norm one element $\mu \in A_*$ has an admissible norm.

In other words, there exists a norm $\|\cdot\|_{\mu}$ on

$$\mathbf{A} \cdot \mu = \{ \mathbf{a} \cdot \mu \colon \mathbf{a} \in \mathbf{A} \}$$

such that the completion of $A\cdot \mu$ is a reflexive space E_μ , and the left module action of A on E_μ induces a w^* -continuous representation

$$\pi: A \longrightarrow \mathscr{L}(E_{\mu}).$$

Moreover, there exists $x \in E_{\mu}$ and $\lambda \in E_{\mu}^*$ such that

$$\mu = \pi_{\mathsf{X},\lambda}.$$

• In 2003, Megrelishvili proved a representation theorem for WAP-functions associated to a semitopological flow (*S*, *X*).

$$\pi: A \longrightarrow \mathscr{L}(E)$$

$$\pi: A \longrightarrow \mathscr{L}(E)$$

be subordinate to an introverted $X \subset A^*$.

(i) $\widetilde{\pi} \colon X^* \longrightarrow \mathcal{L}(E)$, $\langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle$, in which $\Psi \in X^*$, $y \in E$, $f \in E^*$, is a w^* -continuous representation of X^* .

$$\pi: A \longrightarrow \mathscr{L}(E)$$

- (i) $\widetilde{\pi} \colon X^* \longrightarrow \mathcal{L}(E)$, $\langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle$, in which $\Psi \in X^*$, $y \in E$, $f \in E^*$, is a w^* -continuous representation of X^* .
- (ii) The image of $\widetilde{\pi}$ is the WOT-closure of the image of π .

$$\pi: A \longrightarrow \mathscr{L}(E)$$

- (i) $\widetilde{\pi} \colon X^* \longrightarrow \mathcal{L}(E)$, $\langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle$, in which $\Psi \in X^*$, $y \in E$, $f \in E^*$, is a w^* -continuous representation of X^* .
- (ii) The image of $\widetilde{\pi}$ is the WOT-closure of the image of π .
- (iii) For every $a \in A$, $\widetilde{\pi}(\dot{a}) = \pi(a)$, where \dot{a} is the canonical image of a in X^* .

$$\pi: A \longrightarrow \mathscr{L}(E)$$

- (i) $\widetilde{\pi} \colon X^* \longrightarrow \mathcal{L}(E)$, $\langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle$, in which $\Psi \in X^*$, $y \in E$, $f \in E^*$, is a w^* -continuous representation of X^* .
- (ii) The image of $\widetilde{\pi}$ is the WOT-closure of the image of π .
- (iii) For every $a \in A$, $\widetilde{\pi}(a) = \pi(a)$, where a is the canonical image of a in X^* .
- (iv) The map $\pi \longrightarrow \widetilde{\pi}$ is a bijection between the set of all continuous representations of A on E subordinate to X and the set of all of w^* -continuous representations of X^* on E.

$$\pi: A \longrightarrow \mathscr{L}(E)$$

- (i) $\widetilde{\pi} \colon X^* \longrightarrow \mathcal{L}(E)$, $\langle \widetilde{\pi}(\Psi)y, f \rangle = \langle \Psi, \pi_{y,f} \rangle$, in which $\Psi \in X^*$, $y \in E$, $f \in E^*$, is a w^* -continuous representation of X^* .
- (ii) The image of $\widetilde{\pi}$ is the WOT-closure of the image of π .
- (iii) For every $a \in A$, $\widetilde{\pi}(a) = \pi(a)$, where a is the canonical image of a in X^* .
- (iv) The map $\pi \longrightarrow \widetilde{\pi}$ is a bijection between the set of all continuous representations of A on E subordinate to X and the set of all of w^* -continuous representations of X^* on E.
- (v) If $\widetilde{\pi}$ is irreducible then so is π , the converse holds if X is faithful.

π -invarience

Let a representation

$$\pi: A \longrightarrow \mathscr{L}(H)$$

be subordinate to an introverted space $X \subset A^*$. Suppose that in a suitable orthonormal basis $(e_i)_{i \in I}$ of H, we have

$$C_j = \sum_{i \in I} \|\pi_{ij}\|_{A^*} < \infty$$
 and $C = \sup_{j \in I} C_j < \infty$. (*)

π -invarience

Let a representation

$$\pi: A \longrightarrow \mathscr{L}(H)$$

be subordinate to an introverted space $X \subset A^*$. Suppose that in a suitable orthonormal basis $(e_i)_{i \in I}$ of H, we have

$$C_j = \sum_{i \in I} \|\pi_{ij}\|_{\mathcal{A}^*} < \infty$$
 and $C = \sup_{j \in I} C_j < \infty$. (*)

Then for an $\overline{\Psi} \in \ell^{\infty}(I, X^*)$ the following are equivalent:

- (i) $a \cdot \overline{\Psi} = {}^t \pi(a) \overline{\Psi}$, for all $a \in A$;
- (ii) $\Phi \Box \overline{\Psi} = {}^t \widetilde{\pi}(\Phi) \overline{\Psi}$, for all $\Phi \in X^*$.

π -invarience

Let a representation

$$\pi: A \longrightarrow \mathscr{L}(H)$$

be subordinate to an introverted space $X \subset A^*$. Suppose that in a suitable orthonormal basis $(e_i)_{i \in I}$ of H, we have

$$C_j = \sum_{i \in I} \|\pi_{ij}\|_{A^*} < \infty$$
 and $C = \sup_{j \in I} C_j < \infty$. (*)

Then for an $\overline{\Psi} \in \ell^{\infty}(I, X^*)$ the following are equivalent:

- (i) $a \cdot \overline{\Psi} = {}^t \pi(a) \overline{\Psi}$, for all $a \in A$;
- (ii) $\Phi \Box \overline{\Psi} = {}^t\widetilde{\pi}(\Phi)\overline{\Psi}$, for all $\Phi \in X^*$.
- We call such an element $\overline{\Psi} \in \ell^{\infty}(I, X^*)$ to be π -invariant.

Application to ideal theory

• Theorem: Using the preceeding notation, if

$$\overline{\Psi} \in \ell^{\infty}(\textbf{\textit{I}},\textbf{\textit{X}}^{*})$$

is a non-zero, π -invariant element, then

$$M:=\overline{\ln{\{\overline{\Psi}(i)\colon i\in I\}}}^{\|\cdot\|}$$

is a closed left ideal of (X^*, \square) .

Application to ideal theory

Theorem: Using the preceeding notation, if

$$\overline{\Psi} \in \ell^{\infty}(\textbf{\textit{I}},\textbf{\textit{X}}^{*})$$

is a non-zero, π -invariant element, then

$$M:=\overline{\ln{\{\overline{\Psi}(i)\colon i\in I\}}}^{\|\cdot\|}$$

is a closed left ideal of (X^*, \Box) . Further, if π is algebraically irreducible, then $\dim(M) \geq |I|$ and M is the minimal closed left ideal containing any non-zero linear combination of $\overline{\Psi}(i)$ $(i \in I)$.

Application to ideal theory

Theorem: Using the preceeding notation, if

$$\overline{\Psi} \in \ell^{\infty}(\textbf{\textit{I}},\textbf{\textit{X}}^{*})$$

is a non-zero, π -invariant element, then

$$M:=\overline{\ln{\{\overline{\Psi}(i)\colon i\in I\}}}^{\|\cdot\|}$$

is a closed left ideal of (X^*, \Box) . Further, if π is algebraically irreducible, then $\dim(M) \geq |I|$ and M is the minimal closed left ideal containing any non-zero linear combination of $\overline{\Psi}(i)$ $(i \in I)$.

• The converse of the above theorem holds for finite dimensional left ideals of (X^*, \Box)

A Cohomological Property

Kaniuth, Lau, and Pym (2008) have shown that if

$$\varphi \colon \mathbf{A} \longrightarrow \mathbb{C}$$

is a non-zero character, then existence of a φ -mean in A^{**} , that is, an element $\Psi \in A^{**}$ such that

$$a \cdot \Psi = \varphi(a)\Psi, \quad \Psi(\varphi) \neq 0,$$

is equivalent to the triviality of certain cohomology groups of A.

A Cohomological Property

Kaniuth, Lau, and Pym (2008) have shown that if

$$\varphi \colon \mathbf{A} \longrightarrow \mathbb{C}$$

is a non-zero character, then existence of a φ -mean in A^{**} , that is, an element $\Psi \in A^{**}$ such that

$$a \cdot \Psi = \varphi(a)\Psi, \quad \Psi(\varphi) \neq 0,$$

is equivalent to the triviality of certain cohomology groups of A.

• Since a representation $\pi\colon A\longrightarrow \mathscr{L}(H)$ can be interpreted as a generalized character, a question arises of whether an analogous connection exists if the character φ is replaced by a representation π .

• Let $\pi \colon A \longrightarrow \mathcal{L}(H)$ be a representation satisfying (*). Let E is a Banach right A-module, and I be a set with $|I| = \dim(H)$.

• Let $\pi : A \longrightarrow \mathcal{L}(H)$ be a representation satisfying (*). Let E is a Banach right A-module, and I be a set with $|I| = \dim(H)$.

Given $\overline{x} \in \ell^1(I, E)$, we may define:

$$(a \cdot \overline{x})(i) = (\pi(a)\overline{x})(i), \tag{1}$$

$$(\overline{x} \cdot a)(i) = \overline{x}(i) \cdot a,$$
 (2)

where $a \in A$, $i \in I$. This turns $\ell^1(I, E)$ into a Banach *A*-bimodule.

• Let $\pi \colon A \longrightarrow \mathcal{L}(H)$ be a representation satisfying (*). Let E is a Banach right A-module, and I be a set with $|I| = \dim(H)$.

Given $\overline{x} \in \ell^1(I, E)$, we may define:

$$(a \cdot \overline{x})(i) = (\pi(a)\overline{x})(i), \tag{1}$$

$$(\overline{x} \cdot a)(i) = \overline{x}(i) \cdot a,$$
 (2)

where $a \in A$, $i \in I$. This turns $\ell^1(I, E)$ into a Banach *A*-bimodule.

• We can link the existence of π -invariant elements in $\ell^{\infty}(I, A^{**})$ to the study of derivations

$$d: A \longrightarrow \ell^1(I, E)^*$$
.

• Theorem: Let $\pi \colon A \longrightarrow \mathscr{L}(H)$ be a continuous representation satisfying the condition (*) as well as the strong Hahn–Banach separation property on a column j, for some $j \in I$.

Suppose that for every Banach right *A*-module *E*, every continuous derivation $d: A \longrightarrow \ell^1(I, E)^*$ is inner. In that case, there exists a π -invariant element $\overline{\Phi}_i \in \ell^\infty(I, A^{**})$ such that:

$$\langle \overline{\Phi}_{j}(i), \pi_{kj} \rangle = \delta_{ik} \quad (i, k \in I).$$

• Theorem: Let $\pi \colon A \longrightarrow \mathscr{L}(H)$ be a continuous representation satisfying the condition (*) as well as the strong Hahn–Banach separation property on a column j, for some $j \in I$.

Suppose that for every Banach right *A*-module *E*, every continuous derivation $d: A \longrightarrow \ell^1(I, E)^*$ is inner. In that case, there exists a π -invariant element $\overline{\Phi}_i \in \ell^\infty(I, A^{**})$ such that:

$$\langle \overline{\Phi}_{j}(i), \pi_{kj} \rangle = \delta_{ik} \quad (i, k \in I).$$

• We can show the following converse result as well.

- Theorem: Suppose that $\pi: A \longrightarrow \mathcal{L}(H)$ satisfies (*), and for each $j \in I$, there exists a π -invariant element $\overline{\Phi}_j \in \ell^{\infty}(I, A^{**})$ such that
 - (i) $\sup_{j} \|\overline{\Phi}_{j}\|_{\infty} < \infty$;
 - (ii) $\langle \overline{\Phi}_{i}(i), \pi_{kj} \rangle = \delta_{ik} \quad (i, k \in I).$

If E is any Banach right A-module and $\ell^1(I,E)$ is equipped with the Banach A-bimodule structure defined in (1)–(2), then every continuous derivation $d=(d_i)_{i\in I}\colon A\longrightarrow \ell^1(I,E)^*$ is inner, provided that

$$d_i^{**}(\overline{\Phi}_i(i)) = d_j^{**}(\overline{\Phi}_j(i)) \quad (i, j \in I).$$

- Theorem: Suppose that $\pi \colon A \longrightarrow \mathscr{L}(H)$ satisfies (*), and for each $j \in I$, there exists a π -invariant element $\overline{\Phi}_j \in \ell^{\infty}(I, A^{**})$ such that
 - (i) $\sup_{j} \|\overline{\Phi}_{j}\|_{\infty} < \infty$;
 - (ii) $\langle \overline{\Phi}_{i}(i), \pi_{kj} \rangle = \delta_{ik} \quad (i, k \in I).$

If E is any Banach right A-module and $\ell^1(I,E)$ is equipped with the Banach A-bimodule structure defined in (1)–(2), then every continuous derivation $d=(d_i)_{i\in I}\colon A\longrightarrow \ell^1(I,E)^*$ is inner, provided that

$$d_i^{**}(\overline{\Phi}_i(i)) = d_j^{**}(\overline{\Phi}_j(i)) \quad (i, j \in I).$$

• In the special case that $\pi \colon A \longrightarrow \mathbb{C}$ is a character, the above theorem and its converse recover with the main result of Kaniuth, Lau, and Pym (2008).

Thank you for your attention.