Some Beurling-Fourier algebras are operator algebras

Hun Hee Lee Jointly with Mahya Ghandehari, Ebrahim Samei and Nico Spronk

Waterloo, August 8, 2011

Weighted convolution algebras

- ▶ *G*: a discrete group.
- $\omega: G \to (0,\infty)$ is called a **weight** if it is sub-multiplicative i.e.

$$\omega(st) \leq \omega(s)\omega(t), \ \ s,t \in G.$$

- $\ell^1(G;\omega)$, a weighted ℓ^1 space equipped with the norm $\|f\|_{\ell^1(G;\omega)} = \sum_{x \in G} \omega(x) |f(x)|$, is still a Banach algebra w.r.t. the convolution provided that ω is a weight in the above sense. $\ell^1(G;\omega)$ is called a Beurling algebra on G.
- ▶ (Example: Polymonial weights) $G = \mathbb{Z}^d$, $\alpha \ge 0$. $\omega_{\alpha}^{\text{poly}}(n) = (1 + |n_1| + \dots + |n_d|)^{\alpha}$, $n = (n_1, \dots, n_d) \in \mathbb{Z}^d$.

Reformulation using co-multilplication

 We begin with the co-multiplication (the adjoint of the convolution map)

$$\Gamma:\ell^\infty(G) o\ell^\infty(G imes G)$$

given by $\Gamma(f)(s,t) = f(st)$.

• $(\ell^1(G;\omega))^* = \ell^\infty(G;\omega^{-1})$ with the norm

$$\|f\|_{\ell^{\infty}(G;\omega^{-1})} := \left\|\frac{f}{\omega}\right\|_{\infty},$$

so that $\Phi: \ell^{\infty}(G) \to \ell^{\infty}(G; \omega^{-1}), f \mapsto f\omega$ is an isometry.

Reformulation using co-multilplication: continued

▶ Using the convolution again on $\ell^1(G;\omega)$ means we will use the same Γ on $\ell^\infty(G;\omega^{-1})$. Then, the isometry Φ gives us the modified co-multiplication

$$\widetilde{\Gamma}: \ell^{\infty}(G) \to \ell^{\infty}(G \times G), \ \ f \mapsto \Gamma(f)\Gamma(\omega)(\omega^{-1} \otimes \omega^{-1}).$$

- ▶ Note that $\Gamma(\omega)(\omega^{-1}\otimes\omega^{-1})\leq 1$ iff ω is a weight.
- We would like to do the same procedure in the Fourier alebra setting.

Weighted version of the Fourier algebra A(G)

- ▶ G : compact group.
- ▶ $A(G) = \{f \in C(G) | \|f\|_{A(G)} := \sum_{\pi \in \widehat{G}} d_{\pi} \|\widehat{f}(\pi)\|_{S^1_{d_{\pi}}} < \infty \},$ where S^1_n implies the trace class on ℓ^2_n .
- ► Thus, we have

$$VN(G)\cong igoplus_{\pi\in \widehat{G}} M_{d_\pi}$$
 and $A(G)\cong \ell^1\text{-}igoplus_{\pi\in \widehat{G}} d_\pi S^1_{d_\pi},$

so that A(G) is a one of the simplest non-commutative L^1 -spaces.

- ► The representation picture of *G* suggests us a **simple model for a weight**.
- $A(G;\omega) := \{ f \in C(G) \mid$ $\|f\|_{A(G;\omega)} := \sum_{\pi \in \widehat{G}} d_{\pi}\omega(\pi) \|\widehat{f}(\pi)\|_{S^{1}_{d}} < \infty \}.$

Weighted version of the Fourier algebra A(G): continued

▶ The co-multiplication this time is given by

$$\Gamma: VN(G) \to VN(G \times G), \ \lambda(x) \mapsto \lambda(x) \otimes \lambda(x),$$

where $\lambda(x)$ is the left translation operator acting on $L^2(G)$.

For $\omega:G o (0,\infty)$ we associate an operator $W=(W(\pi)),\ \ W(\pi)=\omega(\pi)id_{M_d}$.

- ▶ We consider the following weighted spaces $VN(G; W^{-1}) := \{AW : A \in VN(G)\}$ with the norm $\|AW\|_{VN(G;W^{-1})} = \|A\|_{VN(G)}$ and $A(G; W) := \{W^{-1}\phi : \phi \in A(G)\}$ with the norm $\|W^{-1}\phi\|_{A(G:W)} = \|\phi\|_{A(G)}$.
- ▶ Clearly $A(G; W) \cong A(G; \omega)$.
- ▶ $\Phi: VN(G) \rightarrow VN(G; W^{-1}), A \mapsto AW$ is an (complete) isometry.

Weighted version of the Fourier algebra A(G): continued 2

▶ If we use the same Γ on $VN(G; W^{-1})$, then by applying Φ we get a modified co-multiplication

$$\widetilde{\Gamma}: \mathit{VN}(G) o \mathit{VN}(G imes G), \ A \mapsto \Gamma(A)\Gamma(W)(W^{-1} \otimes W^{-1}).$$

• We say that $\omega:\widehat{G}\to (0,\infty)$ is a **weight** if

$$\Gamma(W)(W^{-1}\otimes W^{-1})\leq I.$$

▶ Then A(G; W) is a (completely contractive) Banach algebra under the pointwise multiplication. We call A(G; W) a **Beurling-Fourier algebra on** G.

Examples of weights

▶ We need to transfer Γ to the setting on $\bigoplus_{\pi \in \widehat{G}} M_{d_{\pi}}$. For any $A = (A(\pi))_{\pi \in \widehat{G}}$ we have

$$\Gamma(A)(\pi,\pi')\cong\bigoplus_{\sigma\subset\pi\otimes\pi'}A(\sigma),\ \ \pi,\pi'\in\widehat{G},$$

where $\sigma \subset \pi \otimes \pi'$ implies that $\sigma \in \widehat{G}$ appears in the decomposition of $\pi \otimes \pi'$.

▶ Thus, $\omega:\widehat{G}\to (0,\infty)$ is a **weight** if and only if

$$\omega(\sigma) \leq \omega(\pi)\omega(\pi')$$

for every $\sigma \subset \pi \otimes \pi'$.

- $\omega_{\alpha}(\pi) = d_{\pi}^{\alpha}, \ \pi \in \widehat{G}$, the dimension weight of order α .
- ▶ G: connected Lie group, S: a finite generating set in G. $\tau_S(\pi) =$ the least number k with $\pi \in S^{\otimes k}$. $\omega_S^{\alpha}(\pi) = (1 + \tau_S(\pi))^{\alpha}$, the polynomial weight of order α .

A result of Varopoulos

- (Varopoulos, '72) $\ell^1(\mathbb{Z}; \omega_\alpha^{\text{poly}})$ with maximal operator space structure is completely isomorphic to an operator alg. iff $\alpha > \frac{1}{2}$.
- ▶ Note that $\ell^1(\mathbb{Z}; \omega_\alpha^{\text{poly}})$ is Aren regular only when $\alpha > 0$.
- (Ricard, Ghandehari/L/Samei/Spronk, preprint) $\ell^1(\mathbb{Z}^d;\omega_{\alpha}^{\text{poly}})$ with maximal operator space structure is completely isomorphic to an operator alg. iff $\alpha>\frac{d}{2}$.

Some Beurling-Fourier algebras are operator algebras

- ▶ (Blecher, '95)
 - A c.c. Banach alg. \mathcal{A} is completely isomorphic to an operator alg. iff the multiplication map m extends to a completely bounded map $m: \mathcal{A} \otimes_h \mathcal{A} \to \mathcal{A}$.
- $ightharpoonup A(G,\omega)$ with its natural operator space structure is completely isomorphic to an operator alg. iff the modified co-multiplication $\tilde{\Gamma}$ extends to a completely bounded map

$$\tilde{\Gamma}: VN(G) \rightarrow VN(G) \otimes_{eh} VN(G),$$

where $VN(G) \otimes_{eh} VN(G) \cong (A(G) \otimes_h A(G))^*$.

Positive directions

- ► Since $\widetilde{\Gamma}: VN(G) \to VN(G) \overline{\otimes} VN(G)$ is a complete contraction and $\widetilde{\Gamma}(A) = \Gamma(A)\Gamma(W)(W^{-1} \otimes W^{-1})$ we can get positive results when $\Gamma(W)(W^{-1} \otimes W^{-1})$ is a "multiplier" from $VN(G) \overline{\otimes} VN(G)$ into $VN(G) \otimes_{eh} VN(G)$.
- Non-commutative Littlewood multiplier: Ghandehari/L/Samei/Spronk, preprint)

 Elements in $VN(G)\bar{\otimes}L_r^2(VN(G))$ and $L_c^2(VN(G))\bar{\otimes}VN(G)$ are left and right cb-multipliers from $VN(G)\bar{\otimes}VN(G)$ into $VN(G)\otimes_{eh}VN(G)$, where H_r and H_c are row and column Hilbert spaces for a Hilbert space H.
- ▶ We hope to find the decomposition

$$\Gamma(W)(W^{-1}\otimes W^{-1})=T_1+T_2,$$

$$T_1\in L^2_c(VN(G))\bar\otimes VN(G) \text{ and } T_2\in VN(G)\bar\otimes L^2_c(VN(G)).$$

Positive directions: continued

▶ Let $T = \Gamma(W)(W^{-1} \otimes W^{-1})$, then

$$\mathcal{T}(\pi,\pi')\cong igoplus_{\sigma\subset\pi\otimes\pi'}rac{\omega(\sigma)}{\omega(\pi)\omega(\pi')}id_{M_{d_{\sigma}}}$$

▶ When G = SU(n) and $\omega = \omega_{\alpha}$ we have

$$rac{\omega(\sigma)}{\omega(\pi)\omega(\pi')}\lesssim rac{1}{(1+ au_{\mathcal{S}}(\pi))^lpha}+rac{1}{(1+ au_{\mathcal{S}}(\pi'))^lpha}$$

for a canonical generating set S, so that $T \lesssim T_1 + T_2$ with $T_1 = \left(\bigoplus_{\pi \in \widehat{G}} \frac{1}{(1+\tau_S(\pi))^\alpha} id_{M_{d_\pi}}\right) \otimes 1_{VN(G)}$ and $T_2 = 1_{VN(G)} \otimes \left(\bigoplus_{\pi' \in \widehat{G}} \frac{1}{(1+\tau_S(\pi'))^\alpha} id_{M_{d_{\pi'}}}\right)$

Positive directions: continued 2

- $\|\tilde{T}_2\|_{VN(G)\bar{\otimes}L^2_r(VN(G))} \lesssim \left(\sum_{\pi\in\widehat{G}} \frac{d_\pi^2}{(1+\tau_S(\pi))^{2\alpha}}\right)^{\frac{1}{2}} < \infty$ if $\alpha > \frac{d(SU(n))}{2} = \frac{n^2-1}{2}$.
- ▶ (Ghandehari/L/Samei/Spronk, preprint) $A(SU(n), \omega_{\alpha})$ is completely isomorphic to an operator algebra if $\alpha > \frac{d(SU(n))}{2} = \frac{n^2-1}{2}$.
- ▶ G: connected Lie group, S: a canonical generating set $A(G, \omega_S^{\alpha})$ is completely isomorphic to an operator algebra if $\alpha > \frac{d(G)}{2}$.

Negative directions

(Restriction of weights to subgroups)

H: a closed subgroup of G, $\omega:\widehat{G}\to (0,\infty)$: a weight.

We get a weight $\omega_H:\widehat{H} o(0,\infty)$ defined by

$$\omega_H(\rho) = \inf\{\omega(\pi) \mid \rho \subset \pi|_H\}.$$

Then $A(H; \omega_H)$ is a (completely contractive) Banach algebra quotient of $A(G; \omega)$.

- ▶ (Ghandehari/L/Samei/Spronk, preprint) $G = SU(n), H \cong T^{n-1}$ the maximal torus $(\omega_{\alpha})_{H} \cong \omega_{(n-1)\alpha}^{\text{poly}}$ and $(\omega_{S}^{\alpha})_{H} \cong \omega_{\alpha}^{\text{poly}}$.
- ▶ $A(SU(n), \omega_{\alpha})$ is not completely isomorphic to an operator alg. if $\alpha < \frac{1}{2}$.
- ▶ $A(SU(n), \omega_S^{\alpha})$ is not completely isomorphic to an operator alg. if $\alpha < \frac{n-1}{2}$.

Some consequences

- ▶ $A(G; \omega_{2^k})$ is known to be a unital closed subalgebra of $A(G^{(2k)})$, where $G^{(2k)} = G \times \cdots \times G$, 2k-times.
- ▶ $A(SU(n); \omega_{2^k})$ is a unital closed subalgebra of $A(G^{(2^k)})$ which are isomorphic to an operator algebra for big enough k.

Further directions for Beurling-Fourier algebras

- Non-central weights
- ▶ The case of compact quantum groups
- Non-compact groups