A very proper Heisenberg-Lie Banach *-algebra

Niels Laustsen

Lancaster University, UK

Banach Algebras 2011

Waterloo, 8th August 2011

Background

Let $q_1, q_2 \in \mathbb{C} \setminus \{0\}$. Three elements b_1 , b_2 and b_3 of a (complex) algebra satisfy the (q_1, q_2) -deformed Heisenberg-Lie commutation relations if

$$b_1b_2-q_1b_2b_1=b_3, \qquad q_2b_1b_3-b_3b_1=0 \qquad \text{and} \qquad b_2b_3-q_2b_3b_2=0.$$

Classical (undeformed) case: $q_1 = q_2 = 1$. Coloured case: $q_1 = q_2 = -1$.

Question (Sigurdsson–Silvestrov): Can these commutation relations be realized in a Banach algebra?

Answer (L–Silvestrov, *Math. Proc. Royal Irish Acad.* (2009)): Yes, a universal normalized solution exists.

Theorem. For $q_1, q_2 \in \mathbb{C} \setminus \{0\}$, there is a unital Banach algebra \mathcal{B}_{q_1,q_2} that contains elements b_1 , b_2 and b_3 which satisfy the (q_1, q_2) -deformed Heisenberg–Lie commutation relations, and

- $\|b_1\| = \|b_2\| = 1$ and $\|b_3\| = 1 + |q_1|$;
- whenever a unital Banach algebra \mathscr{A} contains elements a_1 , a_2 and a_3 which satisfy the (q_1, q_2) -deformed Heisenberg-Lie commutation relations and $||a_j|| \le 1$ for j = 1, 2, there is a unique bounded unital algebra homomorphism $\varphi \colon \mathscr{B}_{q_1,q_2} \to \mathscr{A}$ such that $\varphi(b_j) = a_j$ for j = 1, 2, 3.

A *-algebraic version

Let $q_1, q_2 \in \mathbb{R} \setminus \{0\}$. A pair of elements c_1 and c_2 of a *-algebra satisfy the *-algebraic (q_1, q_2) -deformed Heisenberg-Lie commutation relations if

$$c_1c_1^* - q_1c_1^*c_1 = c_2$$
 and $q_2c_1c_2 - c_2c_1 = 0$.

Note: In this case $b_1 = c_1$, $b_2 = c_1^*$ and $b_3 = c_2$ satisfy the (q_1, q_2) -deformed Heisenberg-Lie commutation relations.

Theorem (L–Silvestrov). For $q_1, q_2 \in \mathbb{R} \setminus \{0\}$, there is a unital Banach *-algebra \mathscr{C}_{q_1,q_2} that contains a pair of elements c_1 and c_2 which satisfy the *-algebraic (q_1,q_2) -deformed Heisenberg–Lie commutation relations, and

- $\|c_1\| = 1$ and $\|c_2\| = 1 + |q_1|$;
- whenever a unital Banach *-algebra \mathscr{A} contains a pair of elements a_1 and a_2 which satisfy the *-algebraic (q_1,q_2) -deformed Heisenberg-Lie commutation relations and $||a_1|| \leq 1$, there is a unique bounded unital *-homomorphism $\varphi \colon \mathscr{C}_{q_1,q_2} \to \mathscr{A}$ such that $\varphi(c_j) = a_j$ for j = 1,2.

Note: A Banach *-algebra has an isometric involution.

How about C^* -algebras?

Theorem (Generalized Gelfand–Naimark–Segal construction). A unital Banach *-algebra $\mathscr A$ has a faithful *-representation on a Hilbert space if and only if $\mathscr A$ is *-semisimple in the sense that *-rad $\mathscr A = \{0\}$, where

$$*$$
-rad $\mathscr{A} = \bigcap \{ \ker \lambda : \lambda : \mathscr{A} \to \mathbb{C} \text{ is linear and positive} \}.$

Recall: λ is *positive* \iff $\langle a^*a, \lambda \rangle \geqslant 0$ for each $a \in \mathcal{A}$.

Question: Are any of the Banach *-algebras \mathscr{C}_{q_1,q_2} *-semisimple?

Some negative answers

Theorem (L–Silvestrov).

- A pair of elements c_1 and c_2 of a *-semisimple Banach *-algebra satisfy the *-algebraic (1,1)-deformed Heisenberg-Lie commutation relations if and only if c_1 is normal (in the sense that $c_1c_1^* = c_1^*c_1$) and $c_2 = 0$. Hence $\mathscr{C}_{1,1}$ is not *-semisimple.
- Suppose that one of the following five conditions holds:
 - $q_1 < 0$ and $q_2 < 0$;
 - ▶ $0 < q_1 < 1$, and either $0 < q_2 < 1$ or $-\frac{1 q_1}{1 + q_1} < q_2 < 0$;
 - ▶ $0 < q_2 < 1$ and $-\frac{1-q_2}{1+q_2} < q_1 < 0$;
 - ▶ $q_1 > 1$, and either $q_2 > 1$ or $q_2 < -\frac{q_1 + 1}{q_1 1}$ (< -1);
 - ho $q_2>1$ and $q_1<-rac{q_2+1}{q_2-1}\,(<-1).$

Then a pair of elements c_1 and c_2 of a *-semisimple Banach *-algebra satisfy the *-algebraic (q_1, q_2) -deformed Heisenberg–Lie commutation relations if and only if $c_1 = c_2 = 0$.

Hence \mathscr{C}_{q_1,q_2} is not *-semisimple.

ullet $\mathscr{C}_{q,-q^{-1}}$ is not *-semisimple for any $q\in\mathbb{R}\setminus\{0,\pm 1\}$.

A positive result

Main open case: $q_1 = -q_2 = \pm 1$.

Fact.
$$\mathscr{C}_{1,-1} = \mathscr{C}_{-1,1}$$
.

Theorem (L, *Positivity* (to appear)). $\mathscr{C}_{-1,1}$ is *very proper* in the sense that

$$\forall m \in \mathbb{N} \ \forall a_1, \ldots, a_m \in \mathscr{C}_{-1,1} \colon \sum_{i=1}^m a_i^* a_i = 0 \ \Rightarrow \ a_1 = a_2 = \cdots = a_m = 0.$$

Motivation. A very proper Banach *-algebra is "almost" *-semisimple:

Theorem (Kelley–Vaught). The *-radical of a unital Banach *-algebra $\mathscr A$ is given by

$$*\operatorname{\mathsf{-rad}}\mathscr{A} = \Big\{ a \in \mathscr{A} : -a^*a \in \overline{\mathscr{A}^+} \Big\},$$

where $\overline{\mathscr{A}^+}$ denotes the norm-closure of the positive cone

$$\mathscr{A}^+ = \left\{ \sum_{i=1}^m a_i^* a_i : m \in \mathbb{N}, \ a_1, \ldots, a_m \in \mathscr{A} \right\}.$$

Note: \mathscr{A} is very proper if and only if $\{a \in \mathscr{A} : -a^*a \in \mathscr{A}^+\} = \{0\}.$

Further motivation

Theorem (Palmer). A very proper *-algebra $\mathscr A$ is ordered in the sense that

$$\mathscr{A}^+ \cap (-\mathscr{A}^+) = \{0\}.$$

Hence

$$a \leqslant b \iff b - a \in \mathscr{A}^+$$

defines a partial order on the set of self-adjoint elements of \mathscr{A} .

Theorem (L–Silvestrov). For $q_1, q_2 < 0$, a pair of elements c_1 and c_2 of a very proper *-algebra satisfy the *-algebraic (q_1, q_2) -deformed Heisenberg–Lie commutation relations if and only if $c_1 = c_2 = 0$.

Hence \mathscr{C}_{q_1,q_2} is not very proper for $q_1,q_2<0$.

The definition of $\mathscr{C}_{-1,1}$

Recall: The *-algebraic (q_1, q_2) -deformed Heisenberg-Lie commutation relations are

$$c_1c_1^* - q_1c_1^*c_1 = c_2$$
 and $q_2c_1c_2 - c_2c_1 = 0$.

Letting $c = c_1$ and suppressing c_2 , we obtain

$$q_2c^2c^*-(1+q_1q_2)cc^*c+q_1c^*c^2=0.$$

For
$$q_1 = -q_2 = \pm 1$$
: $c^2 c^* = c^* c^2$.

Let \mathbb{S}_2 be the free unital semigroup on two generators s and s^* . (Elements are "words" in s and s^* , together with the neutral element e; the product is concatenation.) This notation indicates that the map which interchanges the generators $(s \leftrightarrow s^*)$ induces a semigroup involution on \mathbb{S}_2 (anti-multiplicative and of period two).

Hence it induces an isometric involution on the semigroup Banach algebra

$$\ell_1(\mathbb{S}_2) = \left\{ f : \mathbb{S}_2 \to \mathbb{C} : \sum_{w \in \mathbb{S}_2} |f(w)| < \infty \right\}.$$

Notation: $f = \sum_{w \in \mathbb{S}_2} f(w) \delta_w$.

Convolution product: $\delta_{\mathbf{v}}\delta_{\mathbf{w}} = \delta_{\mathbf{v}\mathbf{w}}$; involution: $\delta_{\mathbf{w}}^* = \delta_{\mathbf{w}^*}$ for $\mathbf{v}, \mathbf{w} \in \mathbb{S}_2$.

The definition of $\mathscr{C}_{-1,1}$ (continued)

Let \mathscr{J} be the closed *-ideal in $\ell_1(\mathbb{S}_2)$ generated by $g = \delta_{s^2s^*} - \delta_{s^*s^2}$. Then

$$\mathscr{C}_{-1,1} = \ell_1(\mathbb{S}_2)/\mathscr{J}.$$

Indeed, $c = \pi(\delta_s)$ satisfies $c^2c^* = c^*c^2$, where $\pi : \ell_1(\mathbb{S}_2) \to \mathscr{C}_{-1,1}$ is the quotient homomorphism, so $c_1 = c$ and $c_2 = cc^* + c^*c$ satisfy the *-algebraic (-1,1)-deformed Heisenberg–Lie commutation relations.

The universality of this solution follows from the First Isomorphism Theorem and the following universal property of $\ell_1(\mathbb{S}_2)$:

Given an element a in the unit ball of a unital Banach *-algebra \mathscr{A} , there is a unique bounded unital *-homomorphism $\psi: \ell_1(\mathbb{S}_2) \to \mathscr{A}$ such that $\psi(\delta_s) = a$.

Outline of the proof that $\mathscr{C}_{-1,1}$ is very proper

Let $m \in \mathbb{N}$, and suppose that a_1, \ldots, a_m are non-zero elements of $\mathscr{C} := \mathscr{C}_{-1,1}$.

Aim: Prove that $\sum_{i=1}^{m} a_i^* a_i \neq 0$.

Strategy: Find a linear map φ with domain \mathscr{C} such that $\varphi(\sum_{i=1}^m a_i^* a_i) \neq 0$.

A reduction. Let $W = \bigcup_{n=0}^{\infty} (X_n \cup Y_n \cup Z_n)$, where

$$\begin{split} X_n &= \left\{ s^j (s^*)^{n-j} : j \in \{0, 1, \dots, n\} \right\}, \\ Y_n &= \left\{ s^j (s^*)^{2k+1} (ss^*)^{\ell} : j, k \in \mathbb{N}_0, \ \ell \in \mathbb{N}, \ j+2k+2\ell+1 = n \right\}, \\ Z_n &= \left\{ s^j (s^*)^{2k+1} (ss^*)^{\ell} s : j, k, \ell \in \mathbb{N}_0, \ j+2k+2\ell+2 = n \right\}, \end{split}$$

(Note: $Y_n = \emptyset$ for $n \le 2$; and $Z_n = \emptyset$ for $n \le 1$.)

Lemma. For each $a \in \mathcal{C}$, there is $f \in \ell_1(\mathbb{S}_2)$ such that $\pi(f) = a$ and f(w) = 0 for each $w \in \mathbb{S}_2 \setminus W$.

Reason: $c^2c^* = c^*c^2$.

Application: Write $a_i = \pi(f_i)$ for $i \in \{1, ..., m\}$, where $f_i(w) = 0$ for each $w \in \mathbb{S}_2 \setminus W$.

Outline proof: The operators $\widetilde{\rho}_{j,k}$

For $j, k \in \mathbb{N}_0$, let $V_{j,k} \subset \mathbb{S}_2$ be the set of words in j letters s and k letters s^* .

Examples.
$$V_{0,0} = \{e\}$$
, $V_{1,0} = \{s\}$, $V_{0,1} = \{s^*\}$, $V_{1,1} = \{ss^*, s^*s\}$ and $V_{2,1} = \{s^2s^*, ss^*s, s^*s^2\}$.

Then

$$ho_{oldsymbol{j},oldsymbol{k}}\colon \ f\mapsto \sum_{oldsymbol{v}\in V_{oldsymbol{j},oldsymbol{k}}} f(oldsymbol{v})\delta_{oldsymbol{v}}, \quad \ell_1(\mathbb{S}_2) o \ell_1(\mathbb{S}_2),$$

is a projection of norm 1. The First Isomorphism Theorem: There is a unique bounded operator $\widetilde{\rho}_{j,k}$ on $\mathscr C$ such that

$$\ell_{1}(\mathbb{S}_{2}) \xrightarrow{\rho_{j,k}} \ell_{1}(\mathbb{S}_{2})$$

$$\pi \qquad \qquad \pi \qquad \qquad \pi \qquad \qquad \downarrow$$

$$\mathscr{C} - - \overset{\widetilde{\rho}_{j,k}}{-} - \mathscr{C}.$$

Outline proof: Finding a "witness word"

Let

$$N = \min\{n \in \mathbb{N}_0 : \widetilde{\rho}_{j,n-j}(a_i) \neq 0 \text{ for some } i \in \{1,\ldots,m\} \text{ and } j \in \{0,\ldots,n\}\}.$$

Recall: $a_i = \pi(f_i)$. We may suppose that

$$f_1,\ldots,f_m\in\ker
ho_{j,n-j}$$
 for $n\in\{0,\ldots,N-1\}$ and $j\in\{0,\ldots,n\}$.

Then

$$\widetilde{\rho}_{N,N}\left(\sum_{i=1}^m a_i^* a_i\right) = \pi\left(\sum_{i=1}^m \sum_{j=0}^N (\rho_{j,N-j} f_i)^* (\rho_{j,N-j} f_i)\right).$$

Recall: $\rho_{j,N-j}f_i$ is supported on words belonging to W in j letters s and N-j letters s^* . For N and j even (say), these words are

$$s^{j}(s^{*})^{N-j}, \quad s^{j-2\ell+1}(s^{*})^{N-j-2\ell+1}(ss^{*})^{2\ell-1} \quad \text{and} \quad s^{j-2\ell}(s^{*})^{N-j-2\ell+1}(ss^{*})^{2\ell-1}s,$$

where $\ell \in \{1, \ldots, L\}$ and $L = \frac{1}{2} \min\{j, N - j\}$.

Key point: In the latter two cases, the "tail" $(ss^*)^{2\ell-1}$ cannot "untwist" itself in

$$(\rho_{j,N-j}f_i)^*(\rho_{j,N-j}f_i).$$

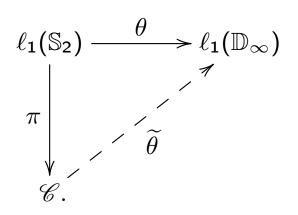
Outline proof: Formalizing the "witness word"

Let \mathbb{D}_{∞} be the *infinite dihedral group*; that is, \mathbb{D}_{∞} is the group generated by two elements r and r^* satisfying $r^2 = (r^*)^2 = e$. The map $r \leftrightarrow r^*$ induces a semigroup involution on \mathbb{D}_{∞} . Hence $\ell_1(\mathbb{D}_{\infty})$ is a Banach *-algebra.

Warning: This is not the usual involution on a group algebra $(\delta_g \mapsto \delta_{g^{-1}})$.

The universal property of $\ell_1(\mathbb{S}_2)$: There is a unique bounded unital *-homomorphism $\theta \colon \ell_1(\mathbb{S}_2) \to \ell_1(\mathbb{D}_\infty)$ such that $\theta(\delta_s) = \delta_r$.

The First Isomorphism Theorem: There is a unique bounded unital *-homomorphism $\widetilde{\theta}$ such that



Outline proof: Joining the pieces together

Suppose that *N* is even and that

$$f_i(s^j(s^*)^{2k+1}(ss^*)^\ell) \neq 0$$

for some $i \in \{1, ..., m\}$, $j, k \in \mathbb{N}_0$ and $\ell \in \mathbb{N}$ with $N = j + 2k + 1 + 2\ell$.

Take ℓ maximal. Then

$$\begin{split} \widetilde{\theta} \, \widetilde{\rho}_{N,N} \bigg(\sum_{i=1}^m a_i^* a_i \bigg) \big((rr^*)^{2(\ell+1)} \big) \\ &= \sum_{i=1}^m \sum_{j=0}^N (\theta \rho_{j,N-j} f_i)^* (\theta \rho_{j,N-j} f_i) \big((rr^*)^{2(\ell+1)} \big) \\ &= \sum_{i=1}^m \sum_{j=1}^{\frac{N}{2} - \ell} |f_i \big(s^{2j-1} (s^*)^{N-2j-2\ell+1} (ss^*)^{\ell} \big)|^2 > 0, \end{split}$$

so
$$\sum_{i=1}^m a_i^* a_i \neq 0$$
.