Fibers of the L^{∞} algebra and disintegration of measures.

Marek Kosiek

Joint work with Krzysztof Rudol

ullet μ - a regular probabilistic measure on a compact set X

- ullet μ a regular probabilistic measure on a compact set X
- ullet X is equal to the closed support of μ

- μ a regular probabilistic measure on a compact set X
- ullet X is equal to the closed support of μ

Problem

Let $h \in L^{\infty}(\mu)$. Is it possible to define in a reasonable sense the value h(x) for $[\mu]$ a.e. $x \in X$?

• Y - the spectrum of $L^{\infty}(\mu)$

- ullet Y the spectrum of $L^{\infty}(\mu)$
- $L^{\infty}(\mu) \sim C(Y)$ by Gelfand transform:

$$L^{\infty}(\mu)\ni h\to \hat{h}\in C(Y)$$

- Y the spectrum of $L^{\infty}(\mu)$
- $L^{\infty}(\mu) \sim C(Y)$ by Gelfand transform:

$$L^{\infty}(\mu)\ni h\to \hat{h}\in C(Y)$$

• We define a mapping $\Pi: Y \to X$ as follows:

$$\Pi(y) = x \text{ iff } f(x) = \hat{f}(y) \text{ for all } f \in C(X)$$

- Y the spectrum of $L^{\infty}(\mu)$
- $L^{\infty}(\mu) \sim C(Y)$ by Gelfand transform:

$$L^{\infty}(\mu)\ni h\to \hat{h}\in C(Y)$$

• We define a mapping $\Pi: Y \to X$ as follows:

$$\Pi(y) = x \text{ iff } f(x) = \hat{f}(y) \text{ for all } f \in C(X)$$

• There is a unique regular probabilistic measure $\tilde{\mu}$ on Y such that

$$\int_X h \, d\mu = \int_Y \hat{h} \, d\tilde{\mu}$$

for $h \in L^{\infty}(\mu)$

- Y the spectrum of $L^{\infty}(\mu)$
- $L^{\infty}(\mu) \sim C(Y)$ by Gelfand transform:

$$L^{\infty}(\mu)\ni h\to \hat{h}\in C(Y)$$

• We define a mapping $\Pi: Y \to X$ as follows:

$$\Pi(y) = x \text{ iff } f(x) = \hat{f}(y) \text{ for all } f \in C(X)$$

• There is a unique regular probabilistic measure $\tilde{\mu}$ on Y such that

$$\int_X h \, d\mu = \int_Y \hat{h} \, d\tilde{\mu}$$

for $h \in L^{\infty}(\mu)$

Theorem

If $h \in L^{\infty}(\mu)$ then there exists an open dense subset U_h of Y with $\tilde{\mu}(U_h) = \tilde{\mu}(Y)$ such that \hat{h} is constant on $\Pi^{-1}(\{x\}) \cap U_h$ for all $x \in X$.

• X, Z - topological compact spaces

- X, Z topological compact spaces
- ν a regular complex Borel measure on X

- X, Z topological compact spaces
- ν a regular complex Borel measure on X
- $P: X \rightarrow Z$ a measurable mapping

- X, Z topological compact spaces
- ν a regular complex Borel measure on X
- $P: X \rightarrow Z$ a measurable mapping

We define $P(\nu)$ on Z as follows:

$$P(\nu)(E) := \nu(P^{-1}(E))$$

for $E \subset Z$, E Borel or $[\mu]$ measurable, so that

$$\int_{Z} h \, dP(\nu) = \int_{X} (h \circ P) \, d\nu, \quad h \in C(Z).$$

Theorem

There is a measurable family of regular complex measures ν_z on Z such that $\nu = \int_Z \nu_z \, dP(\nu)$ i.e.

$$\int h d\nu = \int_{Z} \left(\int h(x) d\nu_{z}(x) \right) dP(\nu)(z) \quad \text{for } h \in C(X).$$

Each measure ν_z is supported on the fiber $P^{-1}(\{z\})$.

Sketch of the proof

Let for
$$f \in C(X)$$

$$g_f := \frac{d(P(f\nu))}{d(P(|\nu|))}$$

Sketch of the proof

Let for $f \in C(X)$

$$g_f := \frac{d(P(f\nu))}{d(P(|\nu|))}$$

Let Y be the spectrum of $L^{\infty}(P(|\nu|))$. Using Banach limit we define for any $z \in Z$ a linear bounded functional of norm 1:

$$C(X) \ni f \to \Phi_{Z}(f) := \lim_{E \in \mathcal{U}_{Z}} \frac{1}{(\widetilde{P(|\nu|)})(E)} \int_{E} \widehat{g}_{f} d(\widetilde{P(|\nu|)})$$

where

$$\mathcal{U}_Z := \{\Pi^{-1}(\Pi(V)) : V \subset Y, V \text{ closed-open}, \ Z \in \Pi(V)\}.$$

Sketch of the proof

Let for $f \in C(X)$ $g_f := \frac{d(P(f
u))}{d(P(|
u|))}$

Let Y be the spectrum of $L^{\infty}(P(|\nu|))$. Using Banach limit we define for any $z \in Z$ a linear bounded functional of norm 1:

$$C(X) \ni f \to \Phi_Z(f) := \lim_{E \in \mathcal{U}_Z} \frac{1}{(\widetilde{P(|\nu|)})(E)} \int_E \widehat{g}_f \, d(\widetilde{P(|\nu|)})$$

where

$$\mathcal{U}_{z} := \{\Pi^{-1}(\Pi(V)) : V \subset Y, V \text{ closed-open}, \ z \in \Pi(V)\}.$$

Hence for each $z \in Z$ there exists a regular complex Borel measure ν_z on X such that

$$\Phi_{Z}(f) = \int f \, d\nu_{Z} \quad \text{for } f \in C(X), \quad \|\nu_{Z}\| \leqslant 1$$

Lemma

For $a \in \Pi^{-1}(\{z\}) \cap U_{g_f}$ we have $\Phi_z(f) = \widehat{g_f}(a)$.

Lemma

For
$$a \in \Pi^{-1}(\{z\}) \cap U_{g_f}$$
 we have $\Phi_z(f) = \widehat{g_f}(a)$.

Then for $f \in C(X)$,

$$\begin{split} \int_{X} f \, d\nu &= \int_{Z} g_{f} \, d(P(|\nu|)) \\ &= \int_{Y} \widehat{g_{f}} \, d(\widetilde{P(|\nu|)}) = \int_{Y \cap U_{g_{f}}} \widehat{g_{f}}(a) \, d(\widetilde{P(|\nu|)})(a) \\ &= \int_{Y \cap U_{g_{f}}} \Phi_{\Pi(a)}(f) \, d(\widetilde{P(|\nu|)})(a) = \int_{Y} \Phi_{\Pi(a)}(f) \, d(\widetilde{P(|\nu|)})(a) \\ &= \int_{Z} \Phi_{Z}(f) \, d(P(|\nu|))(z) = \int_{Z} \left(\int f \, d\nu_{Z} \right) \, d(P(|\nu|))(z). \end{split}$$

Lemma

For
$$a \in \Pi^{-1}(\{z\}) \cap U_{g_f}$$
 we have $\Phi_z(f) = \widehat{g_f}(a)$.

Then for $f \in C(X)$,

$$\begin{split} \int_{X} f \, d\nu &= \int_{Z} g_{f} \, d(P(|\nu|)) \\ &= \int_{Y} \widehat{g_{f}} \, d(\widetilde{P(|\nu|)}) = \int_{Y \cap U_{g_{f}}} \widehat{g_{f}}(a) \, d(\widetilde{P(|\nu|)})(a) \\ &= \int_{Y \cap U_{g_{f}}} \Phi_{\Pi(a)}(f) \, d(\widetilde{P(|\nu|)})(a) = \int_{Y} \Phi_{\Pi(a)}(f) \, d(\widetilde{P(|\nu|)})(a) \\ &= \int_{Z} \Phi_{Z}(f) \, d(P(|\nu|))(z) = \int_{Z} \left(\int f \, d\nu_{Z} \right) \, d(P(|\nu|))(z). \end{split}$$

For ν non-negative, $h \in C(Z)$, denoting $f := h \circ P$ we get $g_f = h$, and hence $\Phi_Z(f) = h(z)$ which implies that $P(\nu_Z)$ is the point mass 1 measure δ_Z at Z, proving that ν_Z is carried by $P^{-1}(\{z\})$. The general case follows almost immediately from the case of non-negative ν .

Using the disintegration formula to the result on $f \in L^{\infty}(\mu)$ we get:

Theorem

For each $f \in L^{\infty}(\mu)$ there is a family $\{\nu_x\}_{x \in X}$ of Borel regular measures on the spectrum of $L^{\infty}(\mu)$ such that the Gelfand transform \hat{f} of f satisfies the disintegration formula

$$\int \hat{f} d\tilde{\mu} = \int_{X} \left(\int \hat{f}(y) d\nu_{X}(y) \right) d\mu(X)$$

and \hat{f} is constant $[\nu_X]$ a.e. on $\Pi^{-1}(\{x\})$ for $[\mu]$ almost every $x \in X$.

Using the disintegration formula to the result on $f \in L^{\infty}(\mu)$ we get:

Theorem

For each $f \in L^{\infty}(\mu)$ there is a family $\{\nu_x\}_{x \in X}$ of Borel regular measures on the spectrum of $L^{\infty}(\mu)$ such that the Gelfand transform \hat{f} of f satisfies the disintegration formula

$$\int \hat{f} d\tilde{\mu} = \int_{X} \left(\int \hat{f}(y) d\nu_{X}(y) \right) d\mu(X)$$

and \hat{f} is constant $[\nu_X]$ a.e. on $\Pi^{-1}(\{x\})$ for $[\mu]$ almost every $x \in X$.

Remark. Roughly speaking, we can say that \hat{f} is almost constant on almost every fiber $\Pi^{-1}(\{x\})$.

THANK YOU!