Boundaries for operator systems

Craig Kleski

University of Virginia

Banach Algebras 2011 at Waterloo

Let X be a compact Hausdorff space and let M be a linear, separating, uniformly closed subspace of C(X) which contains constants. A boundary for M is a subset Y of X such that for any $f \in M$, there exists $y \in Y$ such that ||f|| = |f(y)|. This definition is due to Bishop (1959).

Let X be a compact Hausdorff space and let M be a linear, separating, uniformly closed subspace of C(X) which contains constants. A boundary for M is a subset Y of X such that for any $f \in M$, there exists $y \in Y$ such that ||f|| = |f(y)|. This definition is due to Bishop (1959).

Example (When M is a uniform algebra and X is metrizable)

▶ The *Shilov boundary* is the smallest closed boundary.

Let X be a compact Hausdorff space and let M be a linear, separating, uniformly closed subspace of C(X) which contains constants. A boundary for M is a subset Y of X such that for any $f \in M$, there exists $y \in Y$ such that $\|f\| = |f(y)|$. This definition is due to Bishop (1959).

Example (When M is a uniform algebra and X is metrizable)

- ► The *Shilov boundary* is the smallest closed boundary.
- ► The *Choquet boundary* is a minimal boundary. These are the points having a unique representing measure.

Let X be a compact Hausdorff space and let M be a linear, separating, uniformly closed subspace of C(X) which contains constants. A boundary for M is a subset Y of X such that for any $f \in M$, there exists $y \in Y$ such that $\|f\| = |f(y)|$. This definition is due to Bishop (1959).

Example (When M is a uniform algebra and X is metrizable)

- ► The *Shilov boundary* is the smallest closed boundary.
- ► The *Choquet boundary* is a minimal boundary. These are the points having a unique representing measure.
- ► The Choquet boundary is a dense subset of the Shilov boundary.

Let X be a compact Hausdorff space and let M be a linear, separating, uniformly closed subspace of C(X) which contains constants. A boundary for M is a subset Y of X such that for any $f \in M$, there exists $y \in Y$ such that $\|f\| = |f(y)|$. This definition is due to Bishop (1959).

Example (When M is a uniform algebra and X is metrizable)

- ► The *Shilov boundary* is the smallest closed boundary.
- ► The *Choquet boundary* is a minimal boundary. These are the points having a unique representing measure.
- ► The Choquet boundary is a dense subset of the Shilov boundary.

If $M \subset C(\overline{\mathbb{D}})$ is the disk algebra, then the Choquet boundary is \mathbb{T} .

Operator systems

▶ A (concrete) operator system S is a unital self-adjoint linear subspace of B(H). A linear map ϕ from S to an operator system V is called *completely positive* (cp) if for all $n \in \mathbb{N}$, whenever $(s_{ij}) \in M_n(S)$ is positive, then

$$\phi^{(n)}((s_{ij})) = (\phi(s_{ij}))$$

is also positive in $M_n(V)$. If ϕ is also unital, we say ϕ is ucp.

Operator systems

▶ A (concrete) operator system S is a unital self-adjoint linear subspace of B(H). A linear map ϕ from S to an operator system V is called completely positive (cp) if for all $n \in \mathbb{N}$, whenever $(s_{ij}) \in M_n(S)$ is positive, then

$$\phi^{(n)}((s_{ij})) = (\phi(s_{ij}))$$

is also positive in $M_n(V)$. If ϕ is also unital, we say ϕ is ucp.

▶ Denote the collection of ucp maps from S to B(H) by UCP(S, B(H)). When H is finite-dimensional, these are matrix states.

Boundary ideals and boundary representations

Let S be a concrete operator system and let $A = C^*(S)$.

An ideal J of A is a boundary ideal for S if the quotient A → A/J is completely isometric on S. A boundary ideal that contains all other boundary ideals is called the Shilov ideal for S.

Boundary ideals and boundary representations

Let S be a concrete operator system and let $A = C^*(S)$.

- An ideal J of A is a boundary ideal for S if the quotient A → A/J is completely isometric on S. A boundary ideal that contains all other boundary ideals is called the Shilov ideal for S.
- ▶ An irreducible representation π of A is called a *boundary* representation for S if $\pi|_S$ extends uniquely, as a ucp map, to all of A (i.e., the only ucp extension of $\pi|_S$ is π). Denote the collection of boundary representations for S by ∂_S .

Boundary ideals and boundary representations

Let S be a concrete operator system and let $A = C^*(S)$.

- An ideal J of A is a boundary ideal for S if the quotient A → A/J is completely isometric on S. A boundary ideal that contains all other boundary ideals is called the Shilov ideal for S.
- ▶ An irreducible representation π of A is called a *boundary* representation for S if $\pi|_S$ extends uniquely, as a ucp map, to all of A (i.e., the only ucp extension of $\pi|_S$ is π). Denote the collection of boundary representations for S by ∂_S .
- ▶ Boundary representations are the analogues of Choquet points in the commutative case.

Arveson's theorem

The existence of boundary representations was an open problem for almost 40 years.

Arveson's theorem

The existence of boundary representations was an open problem for almost 40 years.

Theorem (Arveson, 2006)

If S is a separable concrete operator system, then the Shilov ideal for S is intersection of the kernels of boundary representations. Equivalently, for every $n \in \mathbb{N}$ and $(s_{ij}) \in M_n(S)$,

$$\|(s_{ij})\| = \sup_{\pi \in \partial_S} \|\pi^{(n)}((s_{ij}))\|$$

Proof uses some deep disintegration theory.

Boundaries for operator systems

We can improve this result.

Theorem (K., 2011)

Let S be a separable operator system. Then for every $n \in \mathbb{N}$ and $(s_{ij}) \in M_n(S)$,

$$\|(s_{ij})\| = \max_{\pi \in \partial_S} \|\pi^{(n)}((s_{ij}))\|$$

In other words, the Choquet boundary is a boundary in the classical sense.

Let A be a unital C^* -algebra and let $\Lambda \subset A$.

▶ A (proper) C^* -convex combination of $\{a_1, a_2, \dots, a_m\} \subset \Lambda$ is a sum of the form

$$a = \sum_{i=1}^{m} x_i^* a_i x_i$$

where $\{x_1, x_2, \dots, x_m\} \subset A$ are invertible and $\sum_{i=1}^m x_i^* x_i = I$.

Let A be a unital C^* -algebra and let $\Lambda \subset A$.

▶ A (proper) C^* -convex combination of $\{a_1, a_2, \dots, a_m\} \subset \Lambda$ is a sum of the form

$$a = \sum_{i=1}^{m} x_i^* a_i x_i$$

where $\{x_1, x_2, \dots, x_m\} \subset A$ are invertible and $\sum_{i=1}^m x_i^* x_i = I$.

► The set Λ is C^* -convex if Λ is closed under C^* -convex combinations.

Let A be a unital C^* -algebra and let $\Lambda \subset A$.

▶ A (proper) C^* -convex combination of $\{a_1, a_2, \dots, a_m\} \subset \Lambda$ is a sum of the form

$$a = \sum_{i=1}^{m} x_i^* a_i x_i$$

where $\{x_1, x_2, \dots, x_m\} \subset A$ are invertible and $\sum_{i=1}^m x_i^* x_i = I$.

- ▶ The set Λ is C^* -convex if Λ is closed under C^* -convex combinations.
- ▶ Element *a* is called C^* -extreme if whenever it's written as above, then $a \sim_u a_i$ for each *i*.

Let A be a unital C^* -algebra and let $\Lambda \subset A$.

▶ A (proper) C^* -convex combination of $\{a_1, a_2, \dots, a_m\} \subset \Lambda$ is a sum of the form

$$a = \sum_{i=1}^{m} x_i^* a_i x_i$$

where $\{x_1, x_2, \dots, x_m\} \subset A$ are invertible and $\sum_{i=1}^m x_i^* x_i = I$.

- ► The set Λ is C^* -convex if Λ is closed under C^* -convex combinations.
- ▶ Element a is called C^* -extreme if whenever it's written as above, then $a \sim_u a_i$ for each i.

Theorem (Morenz, 1994)

Let $\Lambda \subset M_n$ be compact and C^* -convex. Then Λ is the C^* -convex hull of its C^* -extreme points.

Example: Algebraic matricial ranges

Let $x \in B(H)$ and let $n \in \mathbb{N}$. The n^{th} (algebraic) matricial range of x, denoted $W^n(x)$, is

$$\{\phi(x):\phi:B(H)\to M_n,\phi \text{ is ucp}\}$$

 $W^n(x)$ is always C^* -convex.

A ucp map $\phi: S \to B(H)$ is called *pure* if whenever $\psi: S \to B(H)$ is another cp map with $\phi - \psi$ also cp, then there exists $t \in [0,1]$ such that $\psi = t\phi$.

A ucp map $\phi: S \to B(H)$ is called *pure* if whenever $\psi: S \to B(H)$ is another cp map with $\phi - \psi$ also cp, then there exists $t \in [0,1]$ such that $\psi = t\phi$.

Example

▶ Suppose A is a unital C^* -algebra. Then $\phi : A \to B(H)$ is pure iff ϕ is a compression of an irreducible representation of A.

A ucp map $\phi: S \to B(H)$ is called *pure* if whenever $\psi: S \to B(H)$ is another cp map with $\phi - \psi$ also cp, then there exists $t \in [0,1]$ such that $\psi = t\phi$.

Example

- ▶ Suppose A is a unital C^* -algebra. Then $\phi : A \to B(H)$ is pure iff ϕ is a compression of an irreducible representation of A.
- ▶ Let $x \in B(H)$ and let $S = \text{span}\{x, x^*, I\}$. Then $\phi : S \to M_k$ is pure iff $\phi(x)$ is irreducible and C^* -extreme in $W^k(x)$.

A ucp map $\phi: S \to B(H)$ is called *pure* if whenever $\psi: S \to B(H)$ is another cp map with $\phi - \psi$ also cp, then there exists $t \in [0,1]$ such that $\psi = t\phi$.

Example

- ▶ Suppose *A* is a unital C^* -algebra. Then $\phi: A \to B(H)$ is pure iff ϕ is a compression of an irreducible representation of *A*.
- ▶ Let $x \in B(H)$ and let $S = \text{span}\{x, x^*, I\}$. Then $\phi : S \to M_k$ is pure iff $\phi(x)$ is irreducible and C^* -extreme in $W^k(x)$.
- ▶ Let $\phi: S \to M_1 = \mathbb{C}$ be ucp. Then ϕ is pure (i.e. a pure state) iff ϕ is a (linear) extreme point of the state space for S.

A ucp map $\phi: S \to B(H)$ is called *pure* if whenever $\psi: S \to B(H)$ is another cp map with $\phi - \psi$ also cp, then there exists $t \in [0,1]$ such that $\psi = t\phi$.

Example

- ▶ Suppose A is a unital C^* -algebra. Then $\phi : A \to B(H)$ is pure iff ϕ is a compression of an irreducible representation of A.
- ▶ Let $x \in B(H)$ and let $S = \text{span}\{x, x^*, I\}$. Then $\phi : S \to M_k$ is pure iff $\phi(x)$ is irreducible and C^* -extreme in $W^k(x)$.
- ▶ Let $\phi: S \to M_1 = \mathbb{C}$ be ucp. Then ϕ is pure (i.e. a pure state) iff ϕ is a (linear) extreme point of the state space for S.

Note: if $\phi: S \to B(H)$ is linearly extreme in UCP(S, B(H)), ϕ is not necessarily pure ucp.

Sketch of proof

Recall:

Theorem (K., 2011)

Let S be a separable operator system. Then for every $n \in \mathbb{N}$ and $(s_{ij}) \in M_n(S)$,

$$\|(s_{ij})\| = \max_{\pi \in \partial_S} \|\pi^{(n)}((s_{ij}))\|$$

▶ For any $(s_{ij}) \in M_n(S)$, there exists a matrix state realizing the norm of (s_{ij}) .

- ▶ For any $(s_{ij}) \in M_n(S)$, there exists a matrix state realizing the norm of (s_{ij}) .
- ▶ Using Morenz's Krein-Milman theorem, we can find a *pure* matrix state ϕ on S such that $\|\phi((s_{ij}))\| = \|(s_{ij})\|$.

- ▶ For any $(s_{ij}) \in M_n(S)$, there exists a matrix state realizing the norm of (s_{ij}) .
- ▶ Using Morenz's Krein-Milman theorem, we can find a *pure* matrix state ϕ on S such that $\|\phi((s_{ij}))\| = \|(s_{ij})\|$.
- Every pure ucp map (and in particular, every pure matrix state) has a pure extension to $C^*(M_n(S))$. This extension can be written as a compression of a boundary representation. So an extension of ϕ is $V^*\pi|_S V$, where $\pi \in \partial_S$.

- ▶ For any $(s_{ij}) \in M_n(S)$, there exists a matrix state realizing the norm of (s_{ij}) .
- ▶ Using Morenz's Krein-Milman theorem, we can find a *pure* matrix state ϕ on S such that $\|\phi((s_{ij}))\| = \|(s_{ij})\|$.
- Every pure ucp map (and in particular, every pure matrix state) has a pure extension to $C^*(M_n(S))$. This extension can be written as a compression of a boundary representation. So an extension of ϕ is $V^*\pi|_S V$, where $\pi \in \partial_S$.
- ▶ Irrep π is equivalent to $\sigma^{(n)}$, where σ is an irrep of $C^*(S)$, and also a boundary representation for S. This is a result of Hopenwasser (1973).

- ▶ For any $(s_{ij}) \in M_n(S)$, there exists a matrix state realizing the norm of (s_{ij}) .
- ▶ Using Morenz's Krein-Milman theorem, we can find a *pure* matrix state ϕ on S such that $\|\phi((s_{ij}))\| = \|(s_{ij})\|$.
- Every pure ucp map (and in particular, every pure matrix state) has a pure extension to $C^*(M_n(S))$. This extension can be written as a compression of a boundary representation. So an extension of ϕ is $V^*\pi|_S V$, where $\pi \in \partial_S$.
- ▶ Irrep π is equivalent to $\sigma^{(n)}$, where σ is an irrep of $C^*(S)$, and also a boundary representation for S. This is a result of Hopenwasser (1973).
- ► Then $\|(s_{ij})\| = \|\phi((s_{ij}))\| \le \|\pi((s_{ij}))\| = \|\sigma^{(n)}((s_{ij}))\| \le \|(s_{ij})\|.$

▶ In the commutative case $M \subseteq C(X)$, there is a notion of a "peak point" for M.

- ▶ In the commutative case $M \subseteq C(X)$, there is a notion of a "peak point" for M.
- ▶ Arveson generalized this to irreducible representations: call irreducible representation π of $C^*(S)$ peaking for S if there exist n and $(s_{ij}) \in M_n(S)$ such that

$$\begin{split} &\|\pi^{(n)}((s_{ij}))\| = \|(s_{ij})\| \\ &\|\sigma^{(n)}((s_{ij}))\| < \|(s_{ij})\| \text{ for all irreps } \sigma \nsim_u \pi \end{split}$$

- ▶ In the commutative case $M \subseteq C(X)$, there is a notion of a "peak point" for M.
- ▶ Arveson generalized this to irreducible representations: call irreducible representation π of $C^*(S)$ peaking for S if there exist n and $(s_{ij}) \in M_n(S)$ such that

$$\begin{split} &\|\pi^{(n)}((s_{ij}))\| = \|(s_{ij})\| \\ &\|\sigma^{(n)}((s_{ij}))\| < \|(s_{ij})\| \text{ for all irreps } \sigma \nsim_u \pi \end{split}$$

▶ The fact that boundary representations form a boundary when *S* is separable makes it clear that in this case, all peaking representations are boundary representations.

- ▶ In the commutative case $M \subseteq C(X)$, there is a notion of a "peak point" for M.
- ▶ Arveson generalized this to irreducible representations: call irreducible representation π of $C^*(S)$ peaking for S if there exist n and $(s_{ij}) \in M_n(S)$ such that

$$\begin{split} &\|\pi^{(n)}((s_{ij}))\| = \|(s_{ij})\| \\ &\|\sigma^{(n)}((s_{ij}))\| < \|(s_{ij})\| \text{ for all irreps } \sigma \nsim_u \pi \end{split}$$

- ▶ The fact that boundary representations form a boundary when *S* is separable makes it clear that in this case, all peaking representations are boundary representations.
- ▶ In contrast to the commutative case, there are operator algebras with no peaking representations. The operator algebra generated by the unilateral shift on ℓ^2 is one such example.

Let S be a concrete operator system, and let $A = C^*(S)$.

▶ There are other notions of peaking in the commutative case that have noncommutative analogues, and some of them are boundary representations.

Let S be a concrete operator system, and let $A = C^*(S)$.

- There are other notions of peaking in the commutative case that have noncommutative analogues, and some of them are boundary representations.
- Let \hat{A} be the spectrum of A, topologized with the hull-kernel topology from the primitive ideal space.

Let S be a concrete operator system, and let $A = C^*(S)$.

- ► There are other notions of peaking in the commutative case that have noncommutative analogues, and some of them are boundary representations.
- Let \hat{A} be the spectrum of A, topologized with the hull-kernel topology from the primitive ideal space.
- ▶ $[\pi] \in \hat{A}$ is called a *strong boundary point* if for any open U containing $[\pi]$, there exist $n \in \mathbb{N}$ and $(s_{ij}) \in M_n(S)$ such that $\|\pi^{(n)}((s_{ij}))\| = \|(s_{ij})\|$ and $\|\sigma^{(n)}((s_{ij}))\| < \|\pi^{(n)}((s_{ij}))\|$ for all $\sigma \notin U$.

Let S be a concrete operator system, and let $A = C^*(S)$.

- There are other notions of peaking in the commutative case that have noncommutative analogues, and some of them are boundary representations.
- Let \hat{A} be the spectrum of A, topologized with the hull-kernel topology from the primitive ideal space.
- ▶ $[\pi] \in \hat{A}$ is called a *strong boundary point* if for any open U containing $[\pi]$, there exist $n \in \mathbb{N}$ and $(s_{ij}) \in M_n(S)$ such that $\|\pi^{(n)}((s_{ij}))\| = \|(s_{ij})\|$ and $\|\sigma^{(n)}((s_{ij}))\| < \|\pi^{(n)}((s_{ij}))\|$ for all $\sigma \notin U$.

Theorem (K., 2011)

Every Choquet point for an operator system is a strong boundary point. Thus every separable operator system has a boundary consisting of strong boundary points.

Thanks!