Operator corona problems for function algebras

Ryan Hamilton

Pure Math. Dept. U. Waterloo Waterloo, ON

August 2011 BanAlg 2011, University of Waterloo Joint work with M. Raghupathi (U.S. Naval Academy)

Carleson's corona theorem

Let H^{∞} denote the bounded, analytic functions on the unit disk \mathbb{D} .

Theorem (Carleson 1962)

Suppose $f_1, \ldots, f_n \in H^{\infty}$ satisfy

$$\sum_{i=1}^n |f_i(z)|^2 \ge \delta^2 > 0, \ z \in \mathbb{D}.$$

Then there are functions $g_1, \ldots, g_n \in H^{\infty}$ such that $\sum_{i=1}^n f_i g_i = 1$.

The Toeplitz corona theorem

Theorem (Arveson-1975; Schubert-1978)

Suppose $f_1, \ldots, f_n \in H^{\infty}$ satisfy

$$\sum_{i=1}^n T_{f_i} T_{f_i}^* \geq c^2 I.$$

Then there are functions $g_1, \ldots, g_n \in H^{\infty}$ so that

$$\sum_{i=1}^n f_i g_i = 1, \text{ and } \|[T_{g_i}, \dots, T_{g_n}]^T\| \le c^{-1}.$$

Operator corona problems

Suppose A is an operator algebra and $A_1, \ldots, A_n \in A$ with $[A_1, \ldots, A_n]$ right invertible.

Operator corona problems

Suppose A is an operator algebra and $A_1, \ldots, A_n \in A$ with $[A_1, \ldots, A_n]$ right invertible.

There are
$$B_1, \ldots, B_n \in B(H)$$
 such that $[A_1, \ldots, A_n] \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} = I_H$.

For example, take $B_i = A_i^* \left(\sum_{i=1}^n A_i A_i^* \right)^{-1}$.

Operator corona problems

Suppose A is an operator algebra and $A_1, \ldots, A_n \in A$ with $[A_1, \ldots, A_n]$ right invertible.

There are
$$B_1, \ldots, B_n \in B(H)$$
 such that $[A_1, \ldots, A_n] \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} = I_H$.

For example, take $B_i = A_i^* \left(\sum_{i=1}^n A_i A_i^* \right)^{-1}$. Can we find B_i in \mathcal{A} ?

Operator corona theorem for nest algebras

Suppose $\{P_m\}_{m\geq 0}$ is an increasing sequence of projections tending strongly to I_H and let $\mathcal{A}:=\operatorname{Alg}\{P_m\}_{m\geq 0}$.

Operator corona theorem for nest algebras

Suppose $\{P_m\}_{m\geq 0}$ is an increasing sequence of projections tending strongly to I_H and let $\mathcal{A}:=\operatorname{Alg}\{P_m\}_{m\geq 0}$.

Theorem (Arveson-1975)

Suppose $A_1, \ldots, A_n \in \mathcal{A}$ satisfy

$$\sum_{k=1}^{n} A_k P_m A_k^* \ge c^2 P_m \text{ for every } m \ge 0.$$

Then there are $B_1, \ldots, B_n \in \mathcal{A}$ such that

$$\sum_{k=1}^{n} A_k B_k = I_H$$

Subalgebras of H^{∞}

If \mathcal{B} is an algebra of operators and h a vector, let $\mathcal{B}[h] := \overline{\operatorname{span}\{Bh : B \in \mathcal{B}\}}$.

Subalgebras of H^{∞}

If \mathcal{B} is an algebra of operators and h a vector, let $\mathcal{B}[h] := \overline{\operatorname{span}\{Bh : B \in \mathcal{B}\}}$.

Theorem (Raghupathi-Wick 2010)

Suppose A is a unital, weak*-closed subalgebra of H^{∞} and $f_1, \ldots, f_n \in A$ satisfy

$$\sum_{i=1}^n T_{f_i} P_L T_{f_i}^* \ge c^2 P_L$$

for every L of the form $\mathcal{A}[h]$ where h is an outer function. Then there are $g_1, \ldots, g_n \in \mathcal{A}$ so that

$$\sum_{i=1}^n f_i g_i = 1 \text{ and } \|[T_{g_1}, \dots, T_{g_n}]^T\| \le c^{-1}$$

The bidisk

Theorem (Amar 2003; Trent-Wick 2008)

Suppose $f_1, \ldots, f_n \in H^{\infty}(\mathbb{D}^2)$ satisfy

$$\sum_{i=1}^{n} T_{f_i}^{\nu} (T_{f_i}^{\nu})^* \ge c^2 I_{\nu}$$

for every absolutely continuous measure ν on \mathbb{T}^2 . Then there are functions $g_1, \ldots, g_n \in H^{\infty}(\mathbb{D}^2)$ so that

$$\sum_{i=1}^n f_i g_i = 1, \text{ and } \|[T_{g_i}, \dots, T_{g_n}]^T\| \le c^{-1}.$$

Reproducing kernel Hilbert spaces

Let H be a Hilbert space of \mathbb{C} -valued functions on a set X. If the functionals $h \mapsto h(x)$ are bounded, then we call H a **reproducing kernel Hilbert space** (RKHS).

Reproducing kernel Hilbert spaces

Let H be a Hilbert space of \mathbb{C} -valued functions on a set X. If the functionals $h \mapsto h(x)$ are bounded, then we call H a **reproducing kernel Hilbert space** (RKHS). For each $x \in X$ there is a function $k_x \in H$ such that

$$h(x) = \langle h, k_x \rangle; h \in H.$$

Reproducing kernel Hilbert spaces

Let H be a Hilbert space of \mathbb{C} -valued functions on a set X. If the functionals $h \mapsto h(x)$ are bounded, then we call H a **reproducing kernel Hilbert space** (RKHS). For each $x \in X$ there is a function $k_x \in H$ such that

$$h(x) = \langle h, k_x \rangle; h \in H.$$

The Hardy space H^2 on the unit disk $\mathbb D$ is the canonical example. Its kernel is the Szegő kernel

$$k_w(z)=\frac{1}{1-z\overline{w}}.$$

Let $\Omega \subset \mathbb{C}^d$ be a bounded domain and let μ be Lesbesgue measure on \mathbb{C}^n .

Example (Bergman space)

$$L^2_{\sf a}(\Omega):=\left\{f \text{ homomorphic on } \Omega: \int_\Omega |f|^2 d\mu <\infty
ight\}$$
 is a RKHS.

The kernel for $L^2_a(\mathbb{D})$ is $k_w(z) = \frac{1}{(1-\overline{w}z)^2}$.

Let \mathbb{B}_d be the unit ball of \mathbb{C}^d (we allow $d=\infty$).

Example (Drury-Arveson space)

 H^2_d is the closure of d-variable polynomials on \mathbb{B}_d with kernel

$$k_w^d(z) = \frac{1}{1 - \langle z, w \rangle_{\mathbb{C}^d}}$$

Let \mathbb{B}_d be the unit ball of \mathbb{C}^d (we allow $d=\infty$).

Example (Drury-Arveson space)

 H^2_d is the closure of d-variable polynomials on \mathbb{B}_d with kernel

$$k_w^d(z) = \frac{1}{1 - \langle z, w \rangle_{\mathbb{C}^d}}$$

• H_d^2 is an excellent multivariable analogue of H^2

Let \mathbb{B}_d be the unit ball of \mathbb{C}^d (we allow $d=\infty$).

Example (Drury-Arveson space)

 H^2_d is the closure of d-variable polynomials on \mathbb{B}_d with kernel

$$k_w^d(z) = \frac{1}{1 - \langle z, w \rangle_{\mathbb{C}^d}}$$

- H_d^2 is an excellent multivariable analogue of H^2
- Many function spaces embed into H_{∞}^2 in a natural way (Dirichlet space, Sobolev-Besov spaces).

Multiplier Algebras

The multiplier algebra of a RKHS H is

$$\mathcal{M}(H) := \{ f : X \to \mathbb{C} | fh \in H \text{ for any } h \in H \}$$

Multiplier Algebras

The multiplier algebra of a RKHS H is

$$\mathcal{M}(H) := \{ f : X \to \mathbb{C} | fh \in H \text{ for any } h \in H \}$$

For each multiplier f, the multiplication operator $M_f \in B(H)$ defined by

$$M_f h = fh; h \in H$$

is automatically bounded by the closed graph theorem.

Multiplier Algebras

The multiplier algebra of a RKHS H is

$$\mathcal{M}(H) := \{ f : X \to \mathbb{C} | fh \in H \text{ for any } h \in H \}$$

For each multiplier f, the multiplication operator $M_f \in B(H)$ defined by

$$M_f h = fh; h \in H$$

is automatically bounded by the closed graph theorem. We always have

$$M_f^* k_x = \overline{f(x)} k_x.$$

Examples of multiplier algebras

•
$$M(H^2((\mathbb{D}))) = H^{\infty}(\mathbb{D})$$

 $M(H^2(\mathbb{D}^2)) = H^{\infty}(\mathbb{D}^2)$
 $M(L_2^2(\Omega)) = H^{\infty}(\Omega)$

Examples of multiplier algebras

- $M(H^2((\mathbb{D}))) = H^{\infty}(\mathbb{D})$ $M(H^2(\mathbb{D}^2)) = H^{\infty}(\mathbb{D}^2)$ $M(L_2^2(\Omega)) = H^{\infty}(\Omega)$
- $M(H_d^2) \subset H^{\infty}(\mathbb{B}_d)$ is the unital algebra generated by multiplication by coordinates:

$$M(H_d^2) = Alg(M_{z_1}, \dots, M_{z_d})$$

 $[M_{z_1}, \ldots, M_{z_d}]$ is the model for row contractions (Arveson 1998).

The Toeplitz corona theorem for Drury-Arveson space

Theorem (Ball-Trent-Vinnikov 2002)

Suppose $f_1, \ldots, f_n \in \mathcal{M}(H_d^2)$ satisfy

$$\sum_{i=1}^{n} M_{f_i} M_{f_i}^* \ge c^2 I.$$

Then there are functions $g_1, \ldots, g_n \in \mathcal{M}(H^2_d)$ so that

$$\sum_{i=1}^n f_i g_i = 1.$$

and $||[M_{g_i}, \dots, M_{g_n}]^T|| \le c^{-1}$.

Invariant subspaces

• Suppose A is any unital, weakly closed algebra of multipliers on H.

Invariant subspaces

- Suppose A is any unital, weakly closed algebra of multipliers on H.
- Every invariant subspace L of A is also a RKHS, with kernel function $k_{\lambda}^{L} := P_{L}k_{\lambda}$.

Invariant subspaces

- Suppose A is any unital, weakly closed algebra of multipliers on H.
- Every invariant subspace L of A is also a RKHS, with kernel function $k_{\lambda}^{L} := P_{L}k_{\lambda}$.
- For $f \in \mathcal{A}$ and $g \in L$ we have $fg \in L$. Call this multiplication operator M_f^L .

Suppose $f_1,\ldots,f_n\in\mathcal{A}$ and let

$$F := [f_1, \ldots, f_n]; M_F := [M_{f_1}, \ldots, M_{f_n}] : H^{(n)} \to H.$$

Suppose $f_1, \ldots, f_n \in \mathcal{A}$ and let

$$F := [f_1, \ldots, f_n]; M_F := [M_{f_1}, \ldots, M_{f_n}] : H^{(n)} \to H.$$

Then

$$M_F^* k_{\lambda} = F(\lambda_i)^* k_{\lambda}$$

Suppose $f_1, \ldots, f_n \in \mathcal{A}$ and let

$$F := [f_1, \ldots, f_n]; M_F := [M_{f_1}, \ldots, M_{f_n}] : H^{(n)} \to H.$$

Then

$$M_F^* k_{\lambda} = F(\lambda_i)^* k_{\lambda}$$

and the following are equivalent

$$M_F M_F^* = \sum_{i=1}^n M_{f_i} M_{f_i}^* \ge c^2 I_H$$

Suppose $f_1, \ldots, f_n \in \mathcal{A}$ and let

$$F := [f_1, \ldots, f_n]; M_F := [M_{f_1}, \ldots, M_{f_n}] : H^{(n)} \to H.$$

Then

$$M_F^* k_{\lambda} = F(\lambda_i)^* k_{\lambda}$$

and the following are equivalent

$$M_F M_F^* = \sum_{i=1}^n M_{f_i} M_{f_i}^* \ge c^2 I_H$$

$$\langle (M_F M_F^* - c^2) h, h \rangle \geq 0, h \in H$$

Suppose $f_1, \ldots, f_n \in \mathcal{A}$ and let

$$F := [f_1, \ldots, f_n]; M_F := [M_{f_1}, \ldots, M_{f_n}] : H^{(n)} \to H.$$

Then

$$M_F^* k_{\lambda} = F(\lambda_i)^* k_{\lambda}$$

and the following are equivalent

$$M_F M_F^* = \sum_{i=1}^n M_{f_i} M_{f_i}^* \ge c^2 I_H$$

$$\langle (M_F M_F^* - c^2) h, h \rangle \ge 0, h \in H$$

$$\left[\left(\langle F(\lambda_i)^*, F(\lambda_j)^* \rangle - c^2\right) \langle k_{\lambda_i}, k_{\lambda_j} \rangle\right]_{i,i=1}^k \geq 0.$$

The same observation is true for

$$\sum_{i=1}^{n} M_{f_i}^{L} (M_{f_i}^{L})^* \ge c^2 I_{L}$$

as well, with k^L instead of k.

Let $E = \{\lambda_1, \dots, \lambda_k\} \subset X$. Suppose the condition

$$\left[\left(\langle F(\lambda_i)^*, F(\lambda_j)^* \rangle - c^2 \right) \langle k_{\lambda_i}^L, k_{\lambda_j}^L \rangle \right]_{i,j=1}^k \ge 0, L \in \mathcal{L}$$
 (1)

implied the existence of $M_{G^E} := [M_{g_1^E}, \dots, M_{g_n^E}]^T$ such that

Let $E = \{\lambda_1, \dots, \lambda_k\} \subset X$. Suppose the condition

$$\left[\left(\langle F(\lambda_i)^*, F(\lambda_j)^* \rangle - c^2 \right) \langle k_{\lambda_i}^L, k_{\lambda_j}^L \rangle \right]_{i,j=1}^k \ge 0, L \in \mathcal{L}$$
 (1)

implied the existence of $M_{G^E} := [M_{g_1^E}, \dots, M_{g_n^E}]^T$ such that

•
$$g_i^E \in \mathcal{A}$$

Our approach

Let $E = \{\lambda_1, \dots, \lambda_k\} \subset X$. Suppose the condition

$$\left[\left(\langle F(\lambda_i)^*, F(\lambda_j)^* \rangle - c^2 \right) \langle k_{\lambda_i}^L, k_{\lambda_j}^L \rangle \right]_{i,j=1}^k \ge 0, L \in \mathcal{L}$$
 (1)

implied the existence of $M_{G^E} := [M_{g_1^E}, \dots, M_{g_n^E}]^T$ such that

- $g_i^E \in \mathcal{A}$
- $\sum_{i=1}^{n} f_i(\lambda_j) g_i^E(\lambda_j) = 1$ for $j = 1 \dots k$

Our approach

Let $E = \{\lambda_1, \dots, \lambda_k\} \subset X$. Suppose the condition

$$\left[\left(\langle F(\lambda_i)^*, F(\lambda_j)^* \rangle - c^2 \right) \langle k_{\lambda_i}^L, k_{\lambda_j}^L \rangle \right]_{i,j=1}^k \ge 0, L \in \mathcal{L}$$
 (1)

implied the existence of $M_{G^E} := [M_{g_1^E}, \dots, M_{g_n^E}]^T$ such that

- $g_i^E \in \mathcal{A}$
- $\sum_{i=1}^{n} f_i(\lambda_j) g_i^E(\lambda_j) = 1$ for $j = 1 \dots k$
- $||M_{G^E}|| \leq c^{-1}$.

Our approach

This solves the operator corona problem for A!

- The set of all such G^E are contained in a weak* compact subset.
- Point evaluation is weak*-continuous for A.
- Thus, the G^E accumulate at some G which satisfies $\|M_G\| \le c^{-1}$ and $\sum_{i=1}^n f_i g_i = 1$.

We have reduced the problem to a statement about interpolation.

We have reduced the problem to a statement about interpolation.

Definition

Suppose $\lambda_1, \ldots, \lambda_k \in X$, $v_1, \ldots, v_k \in \ell_n^2$ and $w_1, \ldots, w_k \in \mathbb{C}$.

We have reduced the problem to a statement about interpolation.

Definition

Suppose $\lambda_1, \ldots, \lambda_k \in X$, $v_1, \ldots, v_k \in \ell_n^2$ and $w_1, \ldots, w_k \in \mathbb{C}$. A collection \mathcal{L} of invariant subspaces for \mathcal{A} is said to be a **tangential family** if the following statement holds:

We have reduced the problem to a statement about interpolation.

Definition

Suppose $\lambda_1, \ldots, \lambda_k \in X$, $v_1, \ldots, v_k \in \ell_n^2$ and $w_1, \ldots, w_k \in \mathbb{C}$. A collection \mathcal{L} of invariant subspaces for \mathcal{A} is said to be a **tangential family** if the following statement holds:

There is a contractive column multiplier $M_G = [M_{g_1}, \dots, M_{g_n}]^T$ with $g_i \in \mathcal{A}$ such that $\langle G(\lambda_i), v_i \rangle_{\mathbb{C}^n} = w_i$ for each i if and only if

$$\left[\left(\langle v_i, v_j\rangle_{\mathbb{C}^n} - w_i\overline{w_j}\right)\langle k_{\lambda_i}^L, k_{\lambda_j}^L\rangle_H\right]_{i,j=1}^k, \ L \in \mathcal{L}$$

is positive semidefinite.

We have reduced the problem to a statement about interpolation.

Definition

Suppose $\lambda_1, \ldots, \lambda_k \in X$, $v_1, \ldots, v_k \in \ell_n^2$ and $w_1, \ldots, w_k \in \mathbb{C}$. A collection \mathcal{L} of invariant subspaces for \mathcal{A} is said to be a **tangential family** if the following statement holds:

There is a contractive column multiplier $M_G = [M_{g_1}, \dots, M_{g_n}]^T$ with $g_i \in \mathcal{A}$ such that $\langle G(\lambda_i), v_i \rangle_{\mathbb{C}^n} = w_i$ for each i if and only if

$$\left[\left(\langle v_i, v_j\rangle_{\mathbb{C}^n} - w_i\overline{w_j}\right)\langle k_{\lambda_i}^L, k_{\lambda_j}^L\rangle_H\right]_{i,j=1}^k, \ L \in \mathcal{L}$$

is positive semidefinite.

When $F(\lambda_i)^* = v_i$ and $w_i = c$, this is just the previous matrix.

Tangential interpolation implies a solution

To summarize

Lemma

Suppose \mathcal{L} is a tangential family for \mathcal{A} . If $f_1, \ldots, f_n \in \mathcal{A}$ satisfy

$$\sum_{i=1}^n M_{f_i}^L(M_{f_i}^L)^* \geq c^2 I_L, \ L \in \mathcal{L}$$

then there are $g_1, \ldots, g_n \in \mathcal{A}$ such that

$$\sum_{i=1}^n f_i g_i = 1 \text{ and } \|[M_{g_1}, \dots, M_{g_n}]^T\| \le c^{-1}$$

Elementary spaces of operators

When does an algebra of multipliers A admit a tangential family?

Definition

A weak*-closed subspace S of B(H) is said to be **elementary** if every $\varphi \in S_*$ with $\|\varphi\| < 1$ can be factored as

$$\varphi(A) = \langle Ax, y \rangle, A \in \mathcal{S}$$

for some $x, y \in H$ with ||x|| ||y|| < 1.

Elementary spaces of operators

Define the column space of A:

$$C(\mathcal{A}) := \{ [M_{g_1}, \dots, M_{g_n}]^T : g_i \in \mathcal{A} \} \subset B(H^{(n)}, H)$$

Elementary spaces of operators

Define the column space of A:

$$C(\mathcal{A}) := \{[M_{g_1}, \dots, M_{g_n}]^T : g_i \in \mathcal{A}\} \subset B(H^{(n)}, H)$$

Theorem

Suppose C(A) is elementary. Then $\{A[h] : h \in H\}$ is a tangential family for A.

• Let $\mathcal{J} = \{G \in C(\mathcal{A}) : \langle G(\lambda_i), v_i \rangle_{\mathbb{C}^n} = 0 \text{ for } i = 1, \dots, k\}.$

- Let $\mathcal{J} = \{G \in C(\mathcal{A}) : \langle G(\lambda_i), v_i \rangle_{\mathbb{C}^n} = 0 \text{ for } i = 1, \dots, k\}.$
- If $H \in C(A)$ is any column satisfying $\langle H(x_i), v_i \rangle_{\mathbb{C}^n} = w_i$, then H + G is also a solution for any $G \in \mathcal{J}$.

- Let $\mathcal{J} = \{G \in C(\mathcal{A}) : \langle G(\lambda_i), v_i \rangle_{\mathbb{C}^n} = 0 \text{ for } i = 1, \dots, k\}.$
- If $H \in C(A)$ is any column satisfying $\langle H(x_i), v_i \rangle_{\mathbb{C}^n} = w_i$, then H + G is also a solution for any $G \in \mathcal{J}$.
- We have a contractive solution if and only if $dist(H, \mathfrak{J}) \leq 1$.

- Let $\mathcal{J} = \{G \in C(\mathcal{A}) : \langle G(\lambda_i), v_i \rangle_{\mathbb{C}^n} = 0 \text{ for } i = 1, \dots, k\}.$
- If $H \in C(A)$ is any column satisfying $\langle H(x_i), v_i \rangle_{\mathbb{C}^n} = w_i$, then H + G is also a solution for any $G \in \mathcal{J}$.
- We have a contractive solution if and only if $dist(H, \mathfrak{J}) \leq 1$.
- A standard distance argument shows that

$$\left[\left(\langle v_i, v_j \rangle - w_i \overline{w_j}\right) \langle k_{\lambda_i}^L, k_{\lambda_j}^L \rangle\right]_{i,j=1}^k \geq 0, \ L \in \mathcal{L}$$

implies $dist(H, \mathfrak{J}) \leq 1$ when C(A) is elementary.

Main Result

We say that a function $h \in H_d^2$ is **outer** if $\mathcal{M}(H_d^2)[h] = H_d^2$.

Theorem

Suppose $A \subset \mathcal{M}(H_d^2)$ is a unital, weak*-closed subalgebra. Then C(A) is elementary and every $\varphi \in C(A)_*$ can be factored as

$$\varphi(A) = \langle Ah, k \rangle$$

where h is an outer function.

In other words $\mathcal{L} := \{\mathcal{A}[h] : h \text{ outer}\}$ is a tangential family for \mathcal{A} .

Main result

Corollary

Suppose A is a unital, weak*-closed subalgebra of $\mathcal{M}(H_d^2)$ and $f_1, \ldots, f_n \in A$ satisfy

$$\sum_{i=1}^{n} M_{f_i}^{L} (M_{f_i}^{L})^* \geq c^2 I_L$$

for every L of the form $\mathcal{A}[h]$ where h is an outer function. Then there are $g_1, \ldots, g_n \in \mathcal{A}$ so that

$$\sum_{i=1}^n f_i g_i = 1 \text{ and } \|[M_{g_1}, \dots, M_{g_n}]^T\| \leq c^{-1}$$

Main result

Corollary

Suppose A is a unital, weak*-closed subalgebra of $\mathcal{M}(H_d^2)$ and $f_1, \ldots, f_n \in A$ satisfy

$$\sum_{i=1}^{n} M_{f_i}^{L} (M_{f_i}^{L})^* \ge c^2 I_{L}$$

for every L of the form A[h] where h is an outer function. Then there are $g_1, \ldots, g_n \in A$ so that

$$\sum_{i=1}^n f_i g_i = 1$$
 and $\|[M_{g_1}, \dots, M_{g_n}]^T\| \leq c^{-1}$

When $A = \mathcal{M}(H_d^2)$, this is the Ball-Trent-Vinnikov result. For d = 1 it is the Raghupathi-Wick result.

Additional examples

For $\Omega \subset \mathbb{C}^d$ recall the Bergman space $L^2_a(\Omega)$ and its multipliers $M(L^2_a(\Omega)) = H^\infty(\Omega)$.

Theorem (Bercovici 1987)

 $C(H^{\infty}(\Omega))$ is an elementary subspace of $B(L^2_a(\Omega), L^2_a(\Omega) \otimes \ell^2_n)$.

Additional examples

For $\Omega \subset \mathbb{C}^d$ recall the Bergman space $L^2_a(\Omega)$ and its multipliers $M(L^2_a(\Omega)) = H^\infty(\Omega)$.

Theorem (Bercovici 1987)

 $C(H^{\infty}(\Omega))$ is an elementary subspace of $B(L^2_a(\Omega), L^2_a(\Omega) \otimes \ell^2_n)$.

For $h \in L_a^2(\Omega)$, the cyclic subspace generated by h may be identified with $L_a^2(\Omega, |h|^2 d\mu)$.

Additional examples

For $\Omega \subset \mathbb{C}^d$ recall the Bergman space $L^2_a(\Omega)$ and its multipliers $M(L^2_a(\Omega)) = H^\infty(\Omega)$.

Theorem (Bercovici 1987)

 $C(H^{\infty}(\Omega))$ is an elementary subspace of $B(L^2_a(\Omega), L^2_a(\Omega) \otimes \ell^2_n)$.

For $h \in L_a^2(\Omega)$, the cyclic subspace generated by h may be identified with $L_a^2(\Omega, |h|^2 d\mu)$.

A sufficient condition to solve the Toeplitz corona problem for these algebras is

$$M_F^{\nu}(M_F^*)^{\nu} \geq c^2 I_{\nu}$$

for the absolutely continuous measures $\nu = |h|^2 \mu$ on Ω .