Banach Algebras 2011 Waterloo, Ont.

Some Functional Analytic Properties of the Banach Algebras $A_p^r(G) = A_p(G) \cap L^r(G)$.

By Edmond E. Granirer

1. The RNP.

A Banach space X has the RNP iff its unit ball wants to be weakly compact, but just cannot make it,

as beautifully put by Jerry Uhl.

In fact X has the **RNP**, iff

any norm bounded closed convex subset Y is the closed convex hull of its strongly exposed points.

For **dual Banach spaces** X this is equivalent to

any such Y being the norm closed convex hull of its extreme points i.e. X having the Krein-Milman property (KMP)

(see [DiU] p.128, for at least 17 conditions which are equivalent to the **RNP**).

If X is isomorphic to $\ell^{1}(\Gamma)$ then X has the **RNP**.

The Fourier Algebra of the torus \mathbb{T} , namely $A(\mathbb{T})$, is in fact $\ell^1(\mathbb{Z})$ and as such has the Radon-Nikodym property (**RNP**).

However $L^1(\mathbb{R})$, hence $A(\mathbb{R})$, does not possess this property.

Clearly A(G) has the RNP if G is compact abelian and yet, A(G) does not have the RNP if G is abelian but non compact.

However if K is any compact subset of the abelian group G then $A_K(G) = \{u \in A(G); sptu \subset K\}$ does have the **RNP** (here $sptu = cl\{x \in G; u(x) \neq 0\}$ and cl denotes closure).

The above results can be proved using the Fourier transform and other tools of *abelian* harmonic analysis. *These are not available anymore if G is not abelian*.

For any G, let $\forall 1 denote the Figa-$ Talamanca-Herz Banach algebra as defined by $Herz in [Hz1], thus generated by <math>L^p * (L^p)^{\vee}$.

Hence $u \in A_p(G)$, iff $u = \sum u_n * v_n$, where

 $u_n \in L^{p'}(G), v_n \in L^p(G), \sum \|u\|_{L^{p'}} \|v_n\|_{L^p} < \infty$, the infimum of these

being the norm of $u \in A_p$, and $p^{-1} + (p')^{-1} = 1$, 1 .

Hence $A_2(G)$ is the Fourier algebra of G, (i.e. A(G) a la Eymard in [Ey1]).

If G is abelian then $A_2(G) = L^1(\hat{G})^{\wedge}$.

Remarks: If $p \ne 2$ then $A_p(G)$ is very different from $A_2(G)$. Since, if G_1, G_2 are compact abelian groups and $A_p(G_1)^*, A_p(G_2)^*$ are isometric as Banach spaces then G_1, G_2 are isomorphic as topological groups, as proved by Benyamini and Lin [BL] While $A_2(G)^*$ is isometric to $\ell^{\infty}(\mathbb{Z})$, for all infinite metric compact abelian

It is the purpose of this paper to investigate the **RNP** for the Figa-Talamanca-Herz-Lebesgue Banach Algebras $A_p^r(G) = A_p \cap L^r(G), \forall 1 \le r \le \infty$, equipped with the norm $\|u\|_{A_p^r} = \|u\|_{A_p} + \|u\|_{L^r}$.

For *abelian G*, the Banach algebras $A_2'(G) = \{f \in L^1(\hat{G}); \hat{f} \in L^1(G)\}$ have been around for a long time. Their study started in a beautiful paper of Larsen, Liu and Wang [LLW1964]. The first important paper in which $A_p^1(G)$, for *arbitrary G*, was studied is by Hang-Chin Lai and Ing-Sheun Chen [LaCh1981]. It was this paper which gave us the impetus to study in [Gr2006] functional analytic properties of the Banach algebras $A_p^1(G)$, for arbitrary G.

We have proved in [Gr2] that for *any* G and any compact $K \subset G$ and any $1 , <math>A_K^p = \{u \in A_p(G); sptu \subset K\}$ has the **RNP**. It has been proved by W. Braun, in an unpublished manuscript [Br1985?], that $A_p^1(G)$ has the **RNP**, if G is amenable, *employing the method used in our paper [Gr2]*.

The main result of this paper is the

Theorem 5: Let G be unimodular and either

- (1) G be amenable and 1 , or
- (2) p=2 and $A_2(G)$ have a multiplier bounded approximate identity. Then
- (i) The Banach algebras $A_p^r(G), 1 \le r \le \max(p, p')$ have the RNP.
- (ii) If G is SL(2,R) or SL(2,C)then $\forall 2 < r \le \infty, A_2^r(G)$ DOES NOT HAVE THE RNP.

A crucial step in the proof is the identification of $A_p^r(G) \forall 1 \le r \le p$ as a dual Banach space, namely

Theorem 2: Let 1 and G be amenable, or <math>p=2 and G be arbitrary. Then

- (i) $A_p^r(G) = W_p \cap L^r(G)_{\mathbb{F}} \quad \forall 1 \le r \le p_{\mathbb{F}}$ is a dual Banach space.
- (ii) The above equality fails even if G=Z, p=2 and r>2.

Here $W_p(G) = PF_p(G)^*$, where $PF_p(G)$ is the norm closure of $L^1(G)$ in $PM_p(G) = A_p(G)^*$.

2. Weak sequential completeness. (w.s.c)

Theorem: (a) Assume that for some $1 < q < \infty$, $A_q(G)$ is w.s.c.

Then $A_q^r(G)$ is w.s.c. $\forall 1 \le r < \infty$ [Gr]

Question: For which p and G is $A_p(G)$ w.s.c.?

3. The strict containment Theorem.

If $r < s \text{ then } A_p^r(G) \subset A_p^s(G)$.

When is this a strict inequality?

Theorem: Let G be a noncompact l.c. group and 1 .

- (a) If $1 \le r < p$ and $r < s \le \infty, \Rightarrow A_p^r(G) \subsetneq A_p^s(G)$
 - (b) If G is unimodular and

 $1 \le r < \max(p, p')$ and $r < s \le \infty$ $\longrightarrow A_p^r(G) \subsetneq A_p^s(G)$ \blacksquare

(c) If G is amenable

 $and1 \le r < s \le \infty, \Rightarrow A_p^r(G) \subsetneq A_p^s(G)$. [Gr]

Remark: *Both* (a) and (b) cannot be improved much. Since, if G is a connected semisimple Lie group with finite centre (hence G is unimodular) then $A'_2(G) = A_2(G) \forall r > 2$, by M.Cowling impressive result [Co]. In this case p=p'=2 and

For
$$2 < r < s < \infty$$
, $A_2(G) = A_2^r(G) = A_2^s(G)$.

Moreover, if $2 = r < s \text{ then } A_2^2 \subsetneq A_2^s = A_2$, since for any G, if $A_2^2 = A_2$ then G is compact, (Rickert).

4. Nonfactorisation.

In improving a result of Burnham [Bu2], Lai and Chen [LaCh1981] thm.3.3 have proved that for any noncompact locally compact group G the algebra $A_p^1(G)$ does not factorise.

We improve this result to the algebras $A_p^r(G), \forall 1 \le r < \infty$. Lai and Chen's result is assumed in the proof for r=1, and use is made of the above strict containment theorem.

Theorem: For any noncompact locally compact group G and any $1 \le r < \infty$, the algebra $A_p^r(G)$ does not factorise.

Proof: Assume at first that $1 < r < \infty$. If $A_p^r \cdot A_p^r = A_p^r$, let $u \in A_p^r$. Then for any n, there exist $u_1, ..., u_n$ in A_p^r such that $u = u_1 ... u_n$, where $u_i \in A_p \cap L^r$.

By Burnham's lemma A in [Bu2] , $u \in L_1$. It follows that $A_p^r(G) = A_p^1(G)$. Since r > 1 , it follows from our Strong Containment Theorem in [Gr1] that this cannot be. The Lai-Chen result for r=1 completes the proof. **QED**

5. Arens Regularity

Theorem: (a) If G is a nondiscrete locally compact group then $A_p^r(G)$ is NOT Arens Regular for any

1

(b) If G is any discrete group and $1 and <math>1 \le r \le \max(p, p')$, then $A_p^r(G)$ IS Arens Regular.

(c) If G is discrete and $\max(p,p') < r < \infty$, nothing on Arens Regularity is known, even if G is abelian, in fact even if $G = \mathbb{Z}$ and p = 2.

(d) If G is infinite, **discrete and amenable**[Abelian] then $A_2(G)$, $[A_p(G)]$ IS NOT Arens

Regular, (Tony Lau and J.S.C. Wong, [B. Forrest]) respectively.

6. Spectral Synthesis.

Theorem: Assume that $A_p(G)$ has an approximate identity which is bounded in multiplier norm. (Abelian or amenable groups have such)

Then for fixed $1 , the algebras <math>A_p^r(G), \forall 1 \le r \le \infty$, have the same sets of synthesis. This improves somewhat a result in [RS] Ch.6.

It has been proved by P. Eymard that If $1 [3/2<p<2, or p=2] then the unit sphere <math>S^3$, in R^4

IS [IS NOT] a synthesis set $for A_p(R^4)$.

Theorem: If 1 , <math>[3/2 then

 S^3 IS [IS NOT] a Synthesis set for $A_p^r(R^4), \forall 1 \le r \le \infty$.

References.

[LaCh] Hang-Chin Lai and Ing-Sheun Chen: Harmonic Analysis on the Fourier algebras A_1^.p(G). J. Austral. Math. Soc.(Series A)30 (1981) 438-452.

[**Gr**] E.E. Granirer: The Figa-Talamanca-Herz-Lebesgue Banach Algebras A_p^r(G).

Math.Proc.Camb.Phil.Soc. 140 (2006) 401-416.

[**Tay**] Keith F. Taylor: Geometry of the Fourier Algebras and Locally Compact Groups with Atomic Unitary Representations. Math. Ann. 262 (1983) 183-190.