Adam Fuller

Department of Pure Mathematics, University of Waterloo

Banach Algebras 2011, Waterloo

Introduction

I will talk today on my paper: Finitely Correlated Representations of Product Systems of C^* -Correspondences over \mathbb{N}^k , J. Funct. Anal. 260 (2011)

Let \mathcal{H} be a Hilbert space. A row-operator is a bounded map from $\mathcal{H}^{(n)}$ to \mathcal{H} of the form $A = [A_1, \dots, A_n]$, where each $A_i \in \mathcal{B}(\mathcal{H})$.

▶ We call A a row-contraction when it is contractive (i.e. when $\sum_{i=1}^{n} A_i A_i^* \leq I$),

- ▶ We call A a row-contraction when it is contractive (i.e. when $\sum_{i=1}^{n} A_i A_i^* \leq I$),
- ▶ A is a row-isometry when A is isometric (i.e. when A_1, \ldots, A_n are isometries with pairwise orthogonal ranges),

- ▶ We call A a row-contraction when it is contractive (i.e. when $\sum_{i=1}^{n} A_i A_i^* \leq I$),
- ▶ A is a *row-isometry* when A is isometric (i.e. when A_1, \ldots, A_n are isometries with pairwise orthogonal ranges),
- ▶ and A is a row-coisometry when A is coisometric (i.e. when $\sum_{i=1}^{n} A_i A_i^* = I$).

- ▶ We call A a row-contraction when it is contractive (i.e. when $\sum_{i=1}^{n} A_i A_i^* \leq I$),
- ▶ A is a row-isometry when A is isometric (i.e. when A_1, \ldots, A_n are isometries with pairwise orthogonal ranges),
- ▶ and A is a row-coisometry when A is coisometric (i.e. when $\sum_{i=1}^{n} A_i A_i^* = I$).
- ► We call *A* a *row-unitary* when it is both isometric and coisometric.

θ -commuting Row-isometries

Let $A = [A_1, ..., A_m]$ and $B = [B_1, ..., B_n]$, let θ be a permutation in S_{mn} .

θ -commuting Row-isometries

Let $A = [A_1, ..., A_m]$ and $B = [B_1, ..., B_n]$, let θ be a permutation in S_{mn} . A and B are said to θ -commute if

$$A_iB_j=B_{j'}A_{i'}$$

when $\theta((i,j)) = (i',j')$.

θ -commuting Row-isometries

Let $A = [A_1, ..., A_m]$ and $B = [B_1, ..., B_n]$, let θ be a permutation in S_{mn} . A and B are said to θ -commute if

$$A_i B_j = B_{j'} A_{i'}$$

when $\theta((i,j)) = (i',j')$.

The pair (A, B) can be seen as a representation of the unital semigroup

$$\mathbb{F}_{\theta}^+ = \langle e_1, \dots, e_m, f_1, \dots, f_n : e_i f_j = f_{j'} e_{i'} \text{ when } \theta(i, j) = (i', j') \rangle.$$

Let S and T be θ -commuting row-isometries. They are said to be finitely correlated if there is a finite dimensional subspace $\mathcal{V}\subseteq\mathcal{H}$ such that

Let S and T be θ -commuting row-isometries. They are said to be finitely correlated if there is a finite dimensional subspace $\mathcal{V}\subseteq\mathcal{H}$ such that

• $S_i^* \mathcal{V} \subseteq \mathcal{V}$ and $T_i^* \mathcal{V} \subseteq \mathcal{V}$ (\mathcal{V} is coinvariant)

Let S and T be θ -commuting row-isometries. They are said to be finitely correlated if there is a finite dimensional subspace $\mathcal{V}\subseteq\mathcal{H}$ such that

- ▶ $S_i^* \mathcal{V} \subseteq \mathcal{V}$ and $T_j^* \mathcal{V} \subseteq \mathcal{V}$ (\mathcal{V} is coinvariant)
- $\rightarrow \mathcal{H} = \bigvee_{w \in \mathbb{F}_{n}^{+}, u \in \mathbb{F}_{n}^{+}} S_{w} T_{u} \mathcal{V} \ (\mathcal{V} \text{ is cyclic})$

Let S and T be θ -commuting row-isometries. They are said to be finitely correlated if there is a finite dimensional subspace $\mathcal{V}\subseteq\mathcal{H}$ such that

- ▶ $S_i^* \mathcal{V} \subseteq \mathcal{V}$ and $T_j^* \mathcal{V} \subseteq \mathcal{V}$ (\mathcal{V} is coinvariant)
- $\mathcal{H} = \bigvee_{w \in \mathbb{F}_m^+, u \in \mathbb{F}_n^+} S_w T_u \mathcal{V}$ (\mathcal{V} is cyclic)

We will be concerned with the case when S and T are finitely correlated row-unitaries.

An isometric representation (S, T) of \mathbb{F}_{θ}^+ on \mathcal{K} is a *dilation* of the contractive representation (A, B) on \mathcal{H} if

An isometric representation (S,T) of \mathbb{F}_{θ}^+ on \mathcal{K} is a *dilation* of the contractive representation (A,B) on \mathcal{H} if

 $ightharpoonup \mathcal{H} \subseteq \mathcal{K}$

An isometric representation (S,T) of \mathbb{F}_{θ}^+ on \mathcal{K} is a *dilation* of the contractive representation (A,B) on \mathcal{H} if

- $ightharpoonup \mathcal{H} \subset \mathcal{K}$
- $P_{\mathcal{H}} S_u T_w |_{\mathcal{H}} = A_u B_w.$

An isometric representation (S, T) of \mathbb{F}_{θ}^+ on \mathcal{K} is a *dilation* of the contractive representation (A, B) on \mathcal{H} if

- $ightharpoonup \mathcal{H} \subseteq \mathcal{K}$
- $P_{\mathcal{H}} S_u T_w |_{\mathcal{H}} = A_u B_w.$

The representation (S, T) is a *minimal* dilation when \mathcal{H} is cyclic for (S, T), i.e.

$$\mathcal{K} = \bigvee_{e_u f_w \in \mathbb{F}_{A}^+} S_u T_w \mathcal{H}.$$

Isometric Dilations and Finitely Correlated Representations

So, TFAE:

Isometric Dilations and Finitely Correlated Representations

So, TFAE:

▶ Two θ -commuting row-isometries S and T are finitely correlated

Isometric Dilations and Finitely Correlated Representations

So, TFAE:

- ▶ Two θ -commuting row-isometries S and T are finitely correlated
- S and T are the minimal isometric dilation of two θ-commuting row-contractions A and B on a finite dimensional space.

Isometric Dilations Existence

Theorem (Solel (2006); Davidson, Power & Yang (2010))

If A and B are θ -commuting row-contractions on $\mathcal H$ then they have an isometric dilation S and T on $\mathcal K\supseteq \mathcal H$.

Further, if A and B are row-coisometries i.e.

$$\sum_{i=1}^{m} A_i A_i^* = I = \sum_{j=1}^{n} B_j B_j^*,$$

then if (S, T) is chosen to be minimal then S and T will be row-unitaries and will be unique (up to a unitary equivalence fixing \mathcal{H}).

Finitely Correlated Representations: Result

Theorem (F. 2011)

Let S, T be a θ -commuting finitely correlated row-unitaries on \mathcal{K} . Then there exists a unique minimal cyclic finite dimensional space $\mathcal{V} \subseteq \mathcal{K}$, i.e. there is a unique minimal \mathcal{V} such that

$$\mathcal{K} = \bigvee_{e_u f_w \in \mathbb{F}_{\theta}^+} S_u T_w \mathcal{V}.$$

The compression of (S,T) to the space $\mathcal V$ is a complete unitary invariant for finitely correlated representations of $\mathbb F_{\theta}^+$.

Finitely Correlated Representations: Result

Theorem (F. 2011)

Let S, T be a θ -commuting finitely correlated row-unitaries on \mathcal{K} . Then there exists a unique minimal cyclic finite dimensional space $\mathcal{V} \subseteq \mathcal{K}$, i.e. there is a unique minimal \mathcal{V} such that

$$\mathcal{K} = \bigvee_{\mathbf{e}_u f_w \in \mathbb{F}_{\theta}^+} S_u T_w \mathcal{V}.$$

The compression of (S,T) to the space $\mathcal V$ is a complete unitary invariant for finitely correlated representations of $\mathbb F_{\theta}^+$.

Moreover, if $S = Alg\{I, S_1, \dots, S_m, T_1, \dots, \overline{T_n}\}^{WOT}$ then $P_{\mathcal{V}}$ is in S and $P_{\mathcal{V}}SP_{\mathcal{V}}$ is a C^* -algebra.

Theorem (F. 2011)

Let $A = [A_1, ..., A_m]$ and $B = [B_1, ..., B_n]$ be θ -commuting row coisometries. Let $S = [S_1, ..., S_m]$ and $T = [T_1, ..., T_n]$ be the minimal isometric dilation of A and B.

Theorem (F. 2011)

Let $A = [A_1, ..., A_m]$ and $B = [B_1, ..., B_n]$ be θ -commuting row coisometries. Let $S = [S_1, ..., S_m]$ and $T = [T_1, ..., T_n]$ be the minimal isometric dilation of A and B.

Then the row-isometry $[S_1T_1, S_1T_2, \dots, S_mT_n]$ is the minimal isometric dilation of $[A_1B_1, \dots, A_mB_n]$.

Theorem (F. 2011)

Let $A = [A_1, ..., A_m]$ and $B = [B_1, ..., B_n]$ be θ -commuting row coisometries. Let $S = [S_1, ..., S_m]$ and $T = [T_1, ..., T_n]$ be the minimal isometric dilation of A and B.

Then the row-isometry $[S_1T_1, S_1T_2, ..., S_mT_n]$ is the minimal isometric dilation of $[A_1B_1, ..., A_mB_n]$.

Corollary

Two θ -commuting row unitaries S and T are finitely correlated if and only if the single row-unitary $[S_1T_1, S_1T_2, \ldots, S_mT_n]$ is finitely correlated.

Theorem (F. 2011)

Let $A = [A_1, ..., A_m]$ and $B = [B_1, ..., B_n]$ be θ -commuting row coisometries. Let $S = [S_1, ..., S_m]$ and $T = [T_1, ..., T_n]$ be the minimal isometric dilation of A and B.

Then the row-isometry $[S_1T_1, S_1T_2, ..., S_mT_n]$ is the minimal isometric dilation of $[A_1B_1, ..., A_mB_n]$.

Corollary

Two θ -commuting row unitaries S and T are finitely correlated if and only if the single row-unitary $[S_1T_1, S_1T_2, \ldots, S_mT_n]$ is finitely correlated.

This allows us to consider a single finitely correlated row-isometry, in place of two. Finitely correlated row-isometries were previously studied by Davidson, Kribs and Shpigel (2001).

Let \mathcal{A} be a C^* -algebra and let E be a bi-module over \mathcal{A} with an \mathcal{A} -valued inner product:

Let \mathcal{A} be a C^* -algebra and let E be a bi-module over \mathcal{A} with an \mathcal{A} -valued inner product:

• $\langle \xi, \xi \rangle \geq 0$, and $\langle \xi, \xi \rangle = 0 \Leftrightarrow \xi = 0$

Let \mathcal{A} be a C^* -algebra and let E be a bi-module over \mathcal{A} with an \mathcal{A} -valued inner product:

- $\langle \xi, \xi \rangle \ge 0$, and $\langle \xi, \xi \rangle = 0 \Leftrightarrow \xi = 0$
- $\blacktriangleright \ \langle \xi, \eta \rangle = \langle \eta, \xi \rangle^*$

Let \mathcal{A} be a C^* -algebra and let E be a bi-module over \mathcal{A} with an \mathcal{A} -valued inner product:

- $\langle \xi, \xi \rangle \ge 0$, and $\langle \xi, \xi \rangle = 0 \Leftrightarrow \xi = 0$
- $\triangleright \langle \xi, \eta a \rangle = \langle \xi, \eta \rangle a$

Let $\mathcal A$ be a C^* -algebra and let E be a bi-module over $\mathcal A$ with an $\mathcal A$ -valued inner product:

- $\langle \xi, \xi \rangle \ge 0$, and $\langle \xi, \xi \rangle = 0 \Leftrightarrow \xi = 0$
- $\langle \xi, \eta \mathsf{a} \rangle = \langle \xi, \eta \rangle \mathsf{a}$

together with the property that the left-action of \mathcal{A} on E is by adjointable operators:

Let $\mathcal A$ be a C^* -algebra and let E be a bi-module over $\mathcal A$ with an $\mathcal A$ -valued inner product:

- $\langle \xi, \xi \rangle \ge 0$, and $\langle \xi, \xi \rangle = 0 \Leftrightarrow \xi = 0$

together with the property that the left-action of \mathcal{A} on E is by adjointable operators:

$$\langle a \cdot \xi, \eta \rangle = \langle \xi, a^* \cdot \eta \rangle.$$

Let \mathcal{A} be a C^* -algebra and let E be a bi-module over \mathcal{A} with an \mathcal{A} -valued inner product:

- $\langle \xi, \xi \rangle \ge 0$, and $\langle \xi, \xi \rangle = 0 \Leftrightarrow \xi = 0$
- $\langle \xi, \eta \mathsf{a} \rangle = \langle \xi, \eta \rangle \mathsf{a}$

together with the property that the left-action of \mathcal{A} on E is by adjointable operators:

$$\langle \mathbf{a} \cdot \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = \langle \boldsymbol{\xi}, \mathbf{a}^* \cdot \boldsymbol{\eta} \rangle.$$

If E is complete with respect to the inner-product norm, then it is a C^* -correspondence.

Examples

▶ When $A = \mathbb{C}$ then we just have a Hilbert space. A row-isometry can be viewed as an isometric representation of \mathbb{C}^n .

Examples

- ▶ When $A = \mathbb{C}$ then we just have a Hilbert space. A row-isometry can be viewed as an isometric representation of \mathbb{C}^n .
- ► A directed graph (quiver) can be described as a C*-correspondence. A row-isometry can be viewed as an isometric representation of a directed graph with a single vertex.

Examples

- ▶ When $A = \mathbb{C}$ then we just have a Hilbert space. A row-isometry can be viewed as an isometric representation of \mathbb{C}^n .
- ► A directed graph (quiver) can be described as a C*-correspondence. A row-isometry can be viewed as an isometric representation of a directed graph with a single vertex.
- ▶ If α is an automorphism on \mathcal{A} we can form a C^* -correspondence ${}_{\alpha}\mathcal{A} = \mathcal{A}$ with the following left and right actions $(a \in \mathcal{A}, b \in {}_{\alpha}\mathcal{A})$

$$a \cdot b = \alpha(a)b$$
 and $b \cdot a = ba$

and inner-product: $\langle b, c \rangle = b^*c$.

Representations of this product system are covariant representations of the dynamical system $(\mathcal{A}, \alpha, \mathbb{N})$.

Product Systems of C^* -correspondences

Let E_1, \ldots, E_k be C^* -correspondences over a common C^* -algebra \mathcal{A} . They form a product system over \mathbb{N}^k if there are (associative) isomorphisms

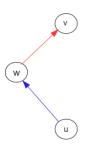
$$t_{i,j}: E_i \otimes E_j \to E_j \otimes E_i$$
.

Examples(1)

Higher-rank graphs can be described as product systems.

A Higher-Rank Graph algebra consists of a set of vertices V and k sets of directed edges E_k together with a commutation rule between the edges:

e.g. if you travel by a red edge followed by a blue edge, then you can equivalently travel by a blue edge followed by a red edge.

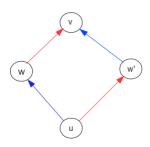


Examples(1)

Higher-rank graphs can be described as product systems.

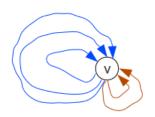
A Higher-Rank Graph algebra consists of a set of vertices V and k sets of directed edges E_k together with a commutation rule between the edges:

e.g. if you travel by a red edge followed by a blue edge, then you can equivalently travel by a blue edge followed by a red edge.



Examples(1)

Two row-contractive θ -commuting operators A and B describe a representation of a single vertex 2-graph.



Examples (2)

If $\alpha_1, \ldots, \alpha_k$ are k commuting automorphisms of A then the C^* -correspondences $\alpha_1 A, \ldots, \alpha_k A$ form a product system.

Examples (2)

If $\alpha_1, \ldots, \alpha_k$ are k commuting automorphisms of \mathcal{A} then the C^* -correspondences $\alpha_1 \mathcal{A}, \ldots, \alpha_k \mathcal{A}$ form a product system. Representations of this product system are covariant representations of the dynamical system $(\mathcal{A}, \alpha, \mathbb{N}^k)$.

Main Result

Theorem (F. 2011)

Let S be a unitary finitely correlated representation of product system of C^* -correspondences over \mathbb{N}^k on \mathcal{K} . Then there exists a unique minimal cyclic finite dimensional space $\mathcal{V} \subseteq \mathcal{K}$. The compression of S to the space \mathcal{V} is a complete invariant for finitely correlated representations of the product system.

Main Result

Theorem (F. 2011)

Let S be a unitary finitely correlated representation of product system of C^* -correspondences over \mathbb{N}^k on \mathcal{K} . Then there exists a unique minimal cyclic finite dimensional space $\mathcal{V} \subseteq \mathcal{K}$. The compression of S to the space \mathcal{V} is a complete invariant for finitely correlated representations of the product system. Moreover, if $S = Ran(\overline{S})^{\text{WOT}}$ then $P_{\mathcal{V}}SP_{\mathcal{V}}$ is a C^* -algebra.