On West Compactifications of Locally Compact Abelian Groups

E. Elgun

Department of Pure Mathematics University of Waterloo

Banach Algebras 2011

Outline

Semigroup Compactifications

Definition

Weakly Almost Periodic Compactification

Eberlein Compactification

Abelian Groups

Dual Group

Structure Thm for non-discrete \widehat{G}

West semigroups

Statement of Main Theorem

Sketch of the proof

When \hat{G} is an *I*-group

When \hat{G} is an non discrete non-I-group

Consequences

G: loc. cpct gp.

- (ψ, X) is a semigroup compactification (sgr cpctf) if
 - X is a cpct, Hdf, right topological semigroup;
 - $\psi: G \to X$ is a cts. homomorphism;
 - $\psi(G)$ is dense in X;
 - $\psi(G)$ is in the topological center $\Lambda(X) = \{t \in X : The func. X \to X : s \to ts \text{ is cts.}\}.$
- Classify cpctfs wrt:
 - algebraic/ topological properties of X
 e.g. X: topological group, semitopological semigroup.
 - properties of C(X)|_G ⊂ C_b(G) e.g. C(X)|_G ⊂ AP(G) or C₀(G).

- *e.g.* NO cpctf (ψ, X) of \mathbb{R} satisfies $\mathcal{C}(X)|_{\mathbb{R}} = \mathcal{C}_b(\mathbb{R})$.
- ▶ **Thm1**. For any subalgebra, \mathcal{A} of $\mathcal{C}_b(G)$ which is
 - norm closed
 - conjugate closed
 - translation invariant
 - contains the constants
 - \blacktriangleright invariant under introversion operators determined by multiplicative linear functionals on $\mathcal A$

$$(\epsilon, \sigma(A))$$
 gives a sgr cpctf of G with $C(X)|_G = A$.

- ▶ If $C(X)|_G \subset A$, then X is called an A-compactification,
- ▶ If $C(X)|_G = A$, then X is called the Universal A-compactification.

Definition

Order on Cpctfs of G

Let (ψ, X) and (ϕ, Y) be cpctfs of G.

▶ If \exists cts. hom. $\widetilde{\phi}: X \to Y$

Y is a quotient of *X*, $Y \leq X$.

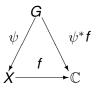
- Y is called a factor of X.
- ▶ In this case $C(Y)|_G \subset C(X)|_G$.

Definition

Dual Map

Given $\psi: G \to X$ a sgr cpctf

▶ Define the dual map ψ^* : $\mathcal{C}(X) \to \mathcal{C}_b(G)$, of ψ by



- ▶ If $G \subset X$, ψ^* is the restriction map.
- $\phi^* \mathcal{C}(Y) \subset \psi^* \mathcal{C}(X) \Rightarrow Y$ is a factor of X.
- Hence any A-compactification is a quotient of the Universal A-compactification.

WAP(G)

▶ Let $f \in C_b(G)$. The *orbit* of f is defined by

$$O(f) = \{f_g = f(g.) : g \in G\},$$

- ▶ We call f a weakly almost periodic function (w.a.p) if the O(f) is relatively weakly compact.
- ► WAP(G) denotes the set of w.a.p functions on G.
- ▶ **Grothendieck Criterion**: A cts. func. is w.a.p iff for any two sequences $\{t_n\}$ and $\{s_m\} \subset G$

$$\lim_{m}\lim_{n}f(t_{n}s_{m})=\lim_{n}\lim_{m}f(t_{n}s_{m})$$

whenever both limits exist.

Properties of WAP(G)

- WAP(G) satisfy the criteria of Thm1, so the w.a.p cpctf of G exists, denoted by (ψ, G^w).
- ▶ Grothendieck Criterion \Rightarrow G^w is a cpct semitopological semigroup.
- ▶ G^{w} is also universal among (ψ, X) s.t. X is semitopological sgr.
- ▶ $\mathbb{C} \cup \mathcal{C}_0(G) \subset WAP(G) \Rightarrow G^{\infty} \leq G^{w}$.
- $\psi: G \to G^w$ is a homeomorphism.

Eberlein Compactification

B(G)

- Let $\mathcal{U}(\mathcal{H})$ be the *unitary operators* on Hilbert sp \mathcal{H} A **unitary representation** of G is a homomorphism $\pi: G \to \mathcal{U}(\mathcal{H})$, cts wrt the **SOT**.
- ▶ $\Sigma = \{$ Equiv. classes of cts unitary repn's of $G\}$.

$$\blacktriangleright B(G) = \{g \to \langle \pi(g)\xi, \eta \rangle : \pi \in \Sigma, \xi, \eta \in \mathcal{H}_{\pi}\}$$

- ▶ B(G) is a subalgebra of $C_b(G)$
- ▶ $B(G) = C^*(G)^*$ via

$$\langle f, u \rangle = \int_{\mathcal{G}} f(x)u(x)dx, \ u \in \mathcal{B}(\mathcal{G}) \ f \in L^{1}(\mathcal{G})$$

B(G) is a comm. unital Ban algebra.

▶ [Bochner] G abelian $\Rightarrow B(G) = \mathcal{FS}(M(G))$.

$\mathcal{E}(G)$

- ▶ [Eberlein] $B(G) \subset WAP(G)$.
- ▶ B(G) satisfies the prop in Thm1, but B(G) is NOT uniformly closed.
- $ightharpoonup \mathcal{E}(G) = \overline{B(G)}^{\|.\|_{\infty}}$, called the **Eberlein algebra**
 - ▶ \exists Corresp. Universal cpctfn, denoted by (ϕ, G^e) .
 - $\mathcal{E}(G) \subset WAP(G) \Rightarrow G^e$ is a stpl sgr and $G^e \leq G^w$.
 - ▶ $C_0(G) \subset \mathcal{E}(G) \Rightarrow \phi$ is a homeomorphism.

Eberlein Compactification

The relation " $\mathcal{E}(G) \subset WAP(G)$ "

- $G \operatorname{cpct} \Rightarrow \mathcal{E}(G) = WAP(G) = \mathcal{C}(G)$.
- G non-compact, loc. cpct. gr.
 - [Chou] If $G = SL_2(\mathbb{R})$, then

$$WAP(SL_2(\mathbb{R})) = \mathbb{C} + \mathcal{C}_0(SL_2(\mathbb{R})) = \mathcal{E}(SL_2(\mathbb{R})).$$

- ▶ [Mayer, Veech] For a larger class of semisimple Lie groups, we have $\mathcal{E}(G) = WAP(G)$
- ▶ [Rudin] If $G = \mathbb{Z}$, then $WAP(G) \neq \mathcal{E}(G)$, [Ramirez] If G non-cpct, Abelian, then $WAP(G) \neq \mathcal{E}(G)$,
- ▶ [Chou] If G non-cpct nilpotent/[IN]-gr, then the quotient $WAP(G)/\mathcal{E}(G)$ contains a linear isometric copy of I^{∞} .

We will construct a semigroup compactification for any l.c.a. G, that is a quotient of both G^e and G^w

- ▶ In 1958 Ellis proved that every *compact right topological semigroup* contains an idempotent.
- ▶ In 1968 West constructed a *compact singly generated* semitopological semigroup, S, which contains 2 idempotents.
 - ▶ \mathbb{Z} is dense in $S \Rightarrow S \leq \mathbb{Z}^w$ and $S \leq \mathbb{Z}^e$.

Goal:

- ▶ To generalize West's construction for any l.c.a group G;
- ▶ To characterize each compact semigroup, called a West semigroup corresponding to G, denoted by \overline{G}^* .

G loc. cpct. Abelian

- ▶ $\widehat{G} = \{ \gamma : G \rightarrow \mathbb{T} : \gamma \text{ cts gr homomorphism} \},$
- $ightharpoonup \widehat{G}$ with pointwise multiplication is the *Dual Group* of *G*.
- ▶ The dual of \widehat{G} is G.
- In fact, the duality is given by Gelfand Transform.
- G is compact if and only if \widehat{G} is discrete,
- We will study **non-discrete** lca groups \widehat{G} .

- ▶ \widehat{G} is called an *I*-group, if every nbhd U of 1 in \widehat{G} contains an element of infinite order.
- ▶ Example of an I-group: $\widehat{G} = \mathbb{T}$, where $G = \mathbb{Z}$
- ▶ Example of non-l-group: $\widehat{G} = \mathbb{D}_q$, $q \in \mathbb{N}^{\geq 2}$
 - If $G = \mathbb{Z}_q$, qth-roots of unity, $\widehat{G} = \mathbb{Z}_q$, where
 - $\widehat{G} = \mathbb{D}_q$ is the complete direct product of countable \mathbb{Z}_q , and $G = (\mathbb{Z}_q)^{\infty}$, with discrete topology.
- ▶ **Thm2.** If \widehat{G} non-disc, Non-I-group, then it contains \mathbb{D}_q as a closed subgroup.

- ▶ $E \subset \widehat{G}$ is called a *Cantor set* if *E* is metrizable, perfect and totally disconnected.
 - ► Equivalently, if *E* is homeomorphic to the classical Cantor subset, *C*, of [0, 1].
- ▶ $E \subset \widehat{G}$ is a *Kronecker set* if $\forall f : E \to \mathbb{T}$ cts and $\forall \epsilon > 0$, $\exists \gamma \in G$ s.t

$$\|f - \gamma|_{\mathcal{E}}\| < \epsilon$$

▶ For $q \ge 2$, $E \subset \widehat{G}$ is a K_q set if $\forall f : E \to \mathbb{Z}_q$ cts and $\forall \epsilon > 0$, $\exists \gamma \in G$ s.t

$$||f - \gamma|_{\mathcal{E}}|| < \epsilon$$

Thm3.

- ▶ If \widehat{G} is an I-group, $\exists E \subset \widehat{G}$, a Cantor set which is also a Kronecker set.
- ▶ If $\widehat{G} = \mathbb{D}_q$, $\exists E \subset \widehat{G}$, a Cantor set which is also a K_q set.

- ▶ Consider $E \subset \widehat{G}$, which is *Cantor*, *Kronecker* (or K_q),
 - E Cantor $\Rightarrow \exists \mu_0 \in M_c^+(E), \mu_0 \neq 0.$
 - ▶ E Kronecker (or K_q) $\Rightarrow C(E, \mathbb{T}) \subset \overline{G}^{\|.\|}$ (or $C(E, \mathbb{Z}_q) \subset \overline{G}^{\|.\|}$).
- ▶ Let \overline{G}^* be the weak*-closure of G in $L^{\infty}(E, \mu_0)$, called a **West Semigroup** of G

Thm.

- ▶ (i) When \widehat{G} is an I-group, \overline{G}^* , is isomorphic to $(L^{\infty})_1$;
- (ii) When \widehat{G} is a non-discrete, non-I-group, \overline{G}^* , is isomorphic to $(L^\infty)_{S_q}$
- ▶ Let $(L^{\infty})_1$ be the closed unit ball of $L^{\infty}([0,1],\lambda)$;
- Let S_q be the closed convex hull of \mathbb{Z}_q , and $(L^{\infty})_{S_q}$ be the S_q -valued functions in $L^{\infty}([0,1],\lambda)$.

$$\overline{G}^* \cong (L^{\infty})_1$$

- $L^{\infty}([0,1],\lambda) \cong L^{\infty}(E,\mu_0);$
- ▶ [0, 1] is compact so S_1 , the set of simple funcs w^* dense in $(L^{\infty})_1$;
- ▶ We need: $e^{i\theta}\chi_{[s,t)} \in \overline{G}^*$ for all $e^{i\theta} \in \mathbb{T}$, $t,s \in [0,1]$
- ▶ [West] $\chi_{[s,t)} \in w^*$ -cl $\{f_{t,s}^n : n \in \mathbb{Z}\}$ where

$$f_{t,s}(x) = \begin{cases} 1, & \text{if } 0 \le x \le t \\ e^{i(t-x)(s-x)}, & \text{if } t \le x \le s \\ 1, & \text{if } s \le x \le 1 \end{cases}$$

- $e^{i\theta} \in \overline{G}^* \Rightarrow e^{i\theta} \chi_{(s,t)} \in \overline{G}^*$.

$$\overline{\textit{G}}^*\cong (\textit{L}^\infty)_{\textit{S}_q}$$

- $L^{\infty}([0,1],\lambda) \cong L^{\infty}(E,\mu_0);$
- ▶ We need: $e^{i\theta}\chi_{[s,t)} \in \overline{G}^*$ for all $e^{i\theta} \in \mathbb{Z}_q$, $t,s \in [0,1]$
- ▶ For $t, s \in E$ t < s define for $x \in E$

$$f_{t,s}^{1}(x) = \begin{cases} 1, & \text{if } 0 \le x < t \\ (\iota), & \text{if } t \le x \le s \\ 1, & \text{if } s < x \le 1 \end{cases}$$

where

$$f(\iota) = f_{t,s}^1(x) = \left\{ egin{array}{ll} e^{2\pi i/q}, & ext{if } x \in \mathcal{S}_1^1 \ dots & dots \ e^{2\pi i}, & ext{if } x \in \mathcal{S}_q^1 \end{array}
ight.$$

Consequences

- $ightharpoonup \overline{G}^*$ is a quotient of G^e and G^w .
- ▶ In both cases $I(\overline{G}^*) = (L^{\infty})_{\{0,1\}} \Rightarrow |I(\overline{G}^*)| = \mathfrak{c}$.
 - ▶ [Brown & Moran '72-'75] $|I(G^e)| \ge$ $| ⇒ |I(G^w)| \ge$ \mathfrak{c} .

[Ruppert '91]
$$|I(\mathbb{Z}^w)| = 2^c$$
.
[Pym '96] $|I((\mathbb{Z}_q^\infty)^w)| = 2^c$.

Open Question: $|I(G^e)| = ?$

- $ightharpoonup I(\overline{G}^*) = (L^{\infty})_{[0,1]} \Rightarrow I(\overline{G}^*)$ is not closed.
 - ▶ [Lemanczyk, Bouziad & Mentzen '00] $I(\mathbb{Z}^e)$ and $I(\mathbb{Z}^w)$ is not closed.
 - ▶ [Pym & Mentzen '96] and $I((\mathbb{Z}_q^{\infty})^w)$ is not closed.