Multi-norms, duality, and the injectivity of $L^p(G)$

H. G. Dales (Lancaster)

20th International Conference on Banach Algebras

Waterloo, 5 August, 2011

[Work with Matt Daws, Hung Le Pham, and Paul Ramsden]

References

- **DP1**: H. G. Dales and M. E. Polyakov, Homological properties of modules over group algebras, *Proc. London Math. Soc.*, (3) 89 (2004), 390–426.
- **DP2**: H. G. Dales and M. E. Polyakov, Multinormed spaces, preprint.
- **DDPR1**: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, Multi-norms and the injectivity of $L^p(G)$, arXiv:1101.4320v1 [math.FA].
- **DDPR2**: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, *Equivalence of multi-norms*, in preparation.
- **DDPR3**: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, *Multi-norms and the amenabil-ity of groups*, in preparation.
- **Ka**: N. J. Kalton, Hermitian operators on complex Banach lattices and a problem of Garth Dales, *J. London Math. Soc.*, submitted.

Amenable Banach algebras

Let A be a Banach algebra, let E be a Banach A-bimodule, and let E' be the dual Banach A-bimodule.

Definition - Johnson A Banach algebra A is **amenable** if every continuous derivation

$$D:A\to E'$$

is inner for every Banach A-bimodule E.

Let $L^1(G)$ be the group algebra of a locally compact group G. Then of course:

Theorem - B. E. Johnson, 1972 The Banach algebra $L^1(G)$ is amenable if and only if the locally compact group G is amenable. \square

Injectivity of modules

Let A be an algebra, and let E and F be left A-modules. A linear map $T:E\to F$ is an A-module morphism if $T(a\cdot x)=a\cdot Tx$ for all $a\in A$ and $x\in E$.

Let A be a Banach algebra, and let E and F be Banach left A-modules. The space of bounded linear maps which are A-module morphisms is denoted by ${}_{A}\mathcal{B}(E,F)$. Such a morphism is **admissible** if there is a bounded linear map $S:F\to E$ with $S\circ T=I_E$, and a **coretraction** if there is such an S in ${}_{A}\mathcal{B}(F,E)$.

Let A be a Banach algebra, and let J be a Banach left A-module. Then J is **injective**, if, for each Banach left A-modules E and F, for each admissible homomorphism $T \in {}_A\mathcal{B}(E,F)$, and each $S \in {}_A\mathcal{B}(E,J)$, there exists $R \in {}_A\mathcal{B}(F,J)$ with $R \circ T = S$.

A condition for injectivity

Let A be a Banach algebra, and let E be a Banach space. For $T \in \mathcal{B}(A, E)$ and $a \in A$, set

$$(a \cdot T)(b) = T(ba) \quad (b \in A).$$

Then $\mathcal{B}(A, E)$ is also a Banach left A-module. The **canonical embedding** $\Pi: E \to \mathcal{B}(A, E)$ is

$$\Pi(x)(a) = a \cdot x \quad (a \in A, x \in E).$$

When E is a left A-module, $\Pi \in {}_{A}\mathcal{B}(E,\mathcal{B}(A,E))$.

Theorem Let A be a Banach algebra, and let J be a Banach left A-module. Then J is injective if and only if $\Pi \in {}_{A}\mathcal{B}(J,\mathcal{B}(A,J))$ is a coretraction.

So we need an A-module homomorphism $\rho: \mathcal{B}(A,J) \to J$ such that $\rho \circ \Pi = I_J$.

The injective (and projectivity) of Banach left $L^1(G)$ -modules were studied in [**DP1**].

For example, $L^1(G)$ itself is injective iff G is discrete and amenable.

Helemski's theorem

Theorem - Helemski, 1984 Let A be an amenable Banach algebra. Then E' is injective for each Banach right A-module E. \Box

Let G be a locally compact group. For $p \geq 1$,

$$L^p(G) = \left\{ f : ||f||_p = \left(\int_G |f(s)|^p \, \mathrm{d}m(s) \right)^{1/p} < \infty \right\}.$$

Now $f \star g \in L^p(G)$ when $f \in L^1(G)$ and $g \in L^p(G)$, and $L^p(G)$ is a Banach left $L^1(G)$ -module; for p > 1, it is the dual of the Banach right $L^1(G)$ -module $L^q(G)$, where q = p'

Corollary Let G be an amenable group. Then $L^p(G)$ is an injective Banach left $L^1(G)$ -module for each p > 1.

The following **conjecture** was raised in [**DP1**]: Suppose that $L^p(G)$ is an injective Banach left $L^1(G)$ -module for some or each p > 1. Then G is amenable.

Basic definitions

Let $(E, \|\cdot\|)$ be a normed space.

Definition A **multi-norm** on $\{E^n : n \in \mathbb{N}\}$ is a sequence $(\|\cdot\|_n)$ such that each $\|\cdot\|_n$ is a norm on E^n , such that $\|x\|_1 = \|x\|$ for each $x \in E$, and such that the following hold for all $n \in \mathbb{N}$ and all $x_1, \ldots, x_n \in E$:

(A1)
$$\|(x_{\sigma(1)},\ldots,x_{\sigma(n)})\|_n = \|(x_1,\ldots,x_n)\|_n$$
 for each permutation σ of $\{1,\ldots,n\}$;

(A2)
$$\|(\alpha_1 x_1, ..., \alpha_n x_n)\|_n$$

$$\leq (\max_{i \in \mathbb{N}_n} |\alpha_i|) \|(x_1, \dots, x_n)\|_n$$

for each $\alpha_1,\ldots,\alpha_n\in\mathbb{C}$;

(A3)
$$\|(x_1,\ldots,x_n,0)\|_{n+1} = \|(x_1,\ldots,x_n)\|_n$$
;

(A4)
$$\|(x_1,\ldots,x_n,x_n)\|_{n+1} = \|(x_1,\ldots,x_n)\|_n$$
.

Dual multi-norms

We get a **dual multi-norm** if we replace (A4) by (B4):

(B4) for each
$$x_1, \ldots, x_n \in E$$
, we have
$$\|(x_1, \ldots, x_n, x_n)\|_{n+1} = \|(x_1, \ldots, 2x_n)\|_n \ .$$

The dual of a multi-norm is a dual multi-norm, and the dual of a dual multi-norm is a multi-norm.

There is a more general notion of a 'specialnorm' that also encompasses the 'sequential norms' of Lambert, Neufang, and Runde; there are connections with operator spaces.

Minimum and maximum multi-norms

Let $(\|\cdot\|_n : n \in \mathbb{N})$ be a multi-norm based on a Banach space E. Then

$$\max \|x_i\| \le \|(x_1, \dots, x_n)\|_n \le \sum_{i=1}^n \|x_i\|$$
 (*)

for all $x_1, \ldots, x_n \in E$ and $n \in \mathbb{N}$.

Example 1 Set $||(x_1, ..., x_n)||_n^{\min} = \max ||x_i||$. This gives the **minimum** multi-norm.

Example 2 It follows from (*) that there is also a **maximum** multi-norm, which we call $(\|\cdot\|_n^{\max}:n\in\mathbb{N}).$

Note that it is **not** true that $\sum_{i=1}^{n} ||x_i||$ gives the maximum multi-norm — because it is not a multi-norm. In fact it gives a dual multi-norm.

A characterization

This is taken from [DDPR1]. It gives a 'coordinate-free' characterization.

Let $(E, \|\cdot\|)$ be a normed space. Then a c_0 -norm on $c_0 \otimes E$ is a norm $\|\cdot\|$ such that:

- 1) $||a \otimes x|| \le ||a|| \, ||x|| \, (a \in c_0, x \in E);$
- 2) $T \otimes I_E$ is bounded on $(c_0 \otimes E, \|\cdot\|)$ with $\|T \otimes I_E\| = \|T\|$ whenever T is a compact operator on c_0 ;
- 3) $\|\delta_1 \otimes x\| = \|x\| \ (x \in E);$

Theorem Multi-norms on $\{E^n:n\in\mathbb{N}\}$ correspond to c_0 -norms on $c_0\otimes E$. The injective tensor product norm gives the minimum multi-norm, and the projective tensor product norm gives the maximum multi-norm

An associated sequence

Let $(\|\cdot\|_n)$ be a multi-norm on $\{E^n : n \in \mathbb{N}\}.$

Define

$$\varphi_n(E) = \sup\{\|(x_1,\ldots,x_n)\|_n : \|x_i\| \le 1\}.$$

Trivially, $1 \leq \varphi_n(E) \leq n$ for all $n \in \mathbb{N}$ and

$$\varphi_{m+n}(E) \le \varphi_m(E) + \varphi_n(E)$$

for all $m, n \in \mathbb{N}$. The sequence $(\varphi_n(E))$ is the **rate-of-growth** of the multi-norm.

In particular $(\varphi_n^{\max}(E))$ is the sequence associated with the maximum multi-norm.

It can be shown quite easily that $\varphi_n^{\max}(E)$ is

$$\sup \left\{ \sum_{j=1}^{n} \left\| \lambda_{j} \right\| \right\} ,$$

where $\lambda_1, \ldots, \lambda_n \in E'$ and

$$\sum_{j=1}^{n} \left| \langle x, \lambda_j \rangle \right| \le 1 \quad (x \in E_{[1]}).$$

Special spaces

Take p with $1 \le p \le \infty$. Direct calculations of $\varphi_n^{\max}(\ell^p)$ using Banach–Mazur distance give:

Theorem (i) For each $p \in [1, 2]$, we have

$$\varphi_n^{\max}(\ell_n^p) = \varphi_n^{\max}(\ell^p) = n^{1/p} \quad (n \in \mathbb{N}).$$

(ii) For each $p \in [2, \infty]$, there is a constant C_p such that

$$\sqrt{n} \le \varphi_n^{\mathsf{max}}(\ell_n^p) = \varphi_n^{\mathsf{max}}(\ell^p) \le C_p \sqrt{n} \quad (n \in \mathbb{N}).$$

We have $C_2 = 1$ and $C_1 \leq \sqrt{2}$, but otherwise I do not know the best constant C_p in the above inequality.

From Dvoretsky's theorem, we have:

Theorem Let E be an infinite-dimensional normed space. Then $\varphi_n^{\max}(E) \geq \sqrt{n}$ for each $n \in \mathbb{N}$. \square

Summing norms - I

Let E be a normed space, and take $p \in [1, \infty)$. For $x_1, \ldots, x_n \in E$, set

$$\mu_{p,n}(x_1,\ldots,x_n) = \sup_{\lambda \in E'_{[1]}} \left\{ \left(\sum_{j=1}^n \left| \langle x_j, \lambda \rangle \right|^p \right)^{1/p} \right\}.$$

This is the **weak** p-summing norm. For example, we can see that

$$\mu_{1,n}(x_1,\ldots,x_n) = \sup \left\{ \left\| \sum_{j=1}^n \zeta_j x_j \right\| : \zeta_1,\ldots,\zeta_n \in \mathbb{T} \right\}.$$

For $\lambda_1, \ldots, \lambda_n \in E'$, we have

$$\mu_{1,n}(\lambda_1,\ldots,\lambda_n) = \sup \left\{ \sum_{j=1}^n \left| \langle x,\lambda_j \rangle \right| : x \in E_{[1]} \right\}.$$

Let E and F be Banach spaces, take p,q with $1 \le p \le q < \infty$, and take $T \in \mathcal{B}(E,F)$ and $n \in \mathbb{N}$. Then $\pi_{q,p}^{(n)}(T)$ is

$$\sup \left\{ \left(\sum_{j=1}^{n} \|Tx_{j}\|^{q} \right)^{1/q} : \mu_{p,n}(x_{1},\ldots,x_{n}) \leq 1 \right\}.$$

Summing norms - II

Again $1 \le p \le q < \infty$.

Definition Let $T \in \mathcal{B}(E,F)$. Suppose that

$$\pi_{q,p}(T) := \lim_{n \to \infty} \pi_{q,p}^{(n)}(T) < \infty.$$

Then T is (q, p)-summing; the set of these is $\Pi_{q,p}(E,F)$. This is a Banach space.

We write $\pi_{q,p}^{(n)}(E)$ for $\pi_{q,p}^{(n)}(I_E)$ and $\pi_{q,p}(E)$ for $\pi_{q,p}(I_E)$. Also $\pi_p(E)$ for $\pi_{p,p}(E)$, etc.

Theorem Let E be a normed space, and let $n \in \mathbb{N}$. Then

$$\varphi_n^{\max}(E) = \pi_1^{(n)}(E').$$

If E = F', then

$$\varphi_n^{\max}(E) = \pi_1^{(n)}(F).$$

The (p,q)-multi-norm

Let E be a Banach space, and take p,q with $1 \le p \le q < \infty$. Define

$$\|(x_1,\ldots,x_n)\|_n^{(p,q)} = \sup \left\{ \left(\sum_{j=1}^n \left| \langle x_j, \lambda_j \rangle \right|^q \right)^{1/q} \right\}$$

taking the sup over all $\lambda_1, \ldots, \lambda_n \in E'$ with $\mu_{p,n}(\lambda_1, \ldots, \lambda_n) \leq 1$.

Fact $\{(E^n, \|\cdot\|_n^{(p,q)}): n\in\mathbb{N}\}$ is a multi-Banach space.

Then $(\|\cdot\|_n^{(p,q)}:n\in\mathbb{N})$ is the (p,q)-multinorm based on E.

Remarks (1) The (1,1)-multi-norm is the maximum multi-norm based on E.

- (2) The (p,q)-multi-norm over E'', when restricted to E, is the (p,q)-multi-norm over E.
- (3) The (p,q)-multi-norm induces the norm on $c_0 \otimes E$ given by embedding $c_0 \otimes E$ into $\Pi_{q,p}(E',c_0)$.

The Hilbert multi-norm

Let $H = \ell^2(S)$ be a Hilbert space. For each family $\mathbf{H} = \{H_1, \dots, H_n\}$ of closed subspaces of H such that $H = H_1 \perp \dots \perp H_n$, set

$$r_{\mathbf{H}}((x_1,\ldots,x_n)) = (\|P_1x_1\|^2 + \cdots + \|P_nx_n\|^2)^{1/2},$$

where $P_i: H \to H_i$ for $i=1,\ldots,n$ is the projection, and then set

$$\|(x_1,\ldots,x_n)\|_n^H = \sup_{\mathbf{H}} r_{\mathbf{H}}((x_1,\ldots,x_n)).$$

Then we obtain a multi-norm $(\|\cdot\|_n^H:n\in\mathbb{N})$ based on H. It is the **Hilbert multi-norm**.

Equivalences of multi-norms

Let E be a normed space. Two multi-norms $(\|\cdot\|_n : n \in \mathbb{N})$ and $(\|\cdot\|_n : n \in \mathbb{N})$ based on E are **equivalent** if there are constants C_1 and C_2 such that, for $n \in \mathbb{N}$ and $x \in E^n$, we have

$$C_1 ||x||_n \le |||x|||_n \le C_2 ||x||_n$$
.

Theorem [DDPR2] Let H be an infinite-dimensional (complex) Hilbert space. Then:

- (i) the Hilbert and (2,2)-multi-norms are equal;
- (ii) $\|\cdot\|^H \leq \|\cdot\|^{\max} \leq \frac{2}{\sqrt{\pi}}\|\cdot\|^H$ (and the constant is best-possible);
- (iii) they are also equivalent to the (p,p)-multinorm whenever $p \in [1,2]$. (But not to any (p,q)-multi-norm when p < q.)
- (iv) but the (p,p)-multi-norm and the (q,q)-multi-norms are not equivalent whenever $p \neq q$ and $\max\{p,q\} > 2$.

The standard q-multi-norm on $L^p(\Omega)$

Let Ω be a measure space, and take p,q with $1 \le p \le q < \infty$. We consider the Banach space $E = L^p(\Omega)$, with the usual L^p -norm $\|\cdot\|$.

For each family $\mathbf{X} = \{X_1, \dots, X_n\}$ of pairwise-disjoint measurable subsets of Ω such that $X_1 \cup \dots \cup X_n = \Omega$, we set

 $r_{\mathbf{X}}((f_1,\ldots,f_n)) = \left(\left\|P_{X_1}f_1\right\|^q + \cdots + \left\|P_{X_n}f_n\right\|^q\right)^{1/q},$ where $P_X: L^p(\Omega) \to L^p(X)$ is the natural projection.

Finally,
$$\|(f_1, \dots, f_n)\|_n^{[q]} = \sup_{\mathbf{X}} r_{\mathbf{X}}((f_1, \dots, f_n))$$
.

This is the **standard** *q*-multi-norm.

Remark Let q = p. Then

$$\|(f_1,\ldots,f_n)\|_n^{[q]} = \||f_1| \vee \cdots \vee |f_n|\|$$
.

Relations between multi-norms

It is a nice game [DDPR2] in using Hölder and summing operators to determine relationships between the above multi-norms. For example:

- 1) for $1 \leq p \leq q < \infty$, $(\|\cdot\|_n^{[q]}) \leq (\|\cdot\|_n^{(p,q)})$ on $L^1(\Omega)$, with equality for all q when p=1;
- 2) for $1 , <math>(\|\cdot\|_n^{[q]})$ is not equivalent to $(\|\cdot\|_n^{(p,q)})$ on ℓ^p ;
- 3) for $1 \le p < q < \infty$, $(\|\cdot\|_n^{(1,q)})$ is equivalent to $(\|\cdot\|_n^{(p,q)})$ on ℓ^1 , but not to $(\|\cdot\|_n^{(q,q)})$;
- 4) Suppose that either $1 \leq p \leq 2 \leq r \leq \infty$ or $1 \leq p < r < 2$. Then the (p,p)-multi-norm is equivalent to the maximum multi-norm on $L^r(\Omega)$, and the stated conditions are exactly best-possible;
- 5) for 2 , the <math>(p,p)-multi-norm is not equivalent to the (q,q)-multi-norm or the maximum multi-norm on any infinite-dimensional Banach space.

Banach lattice multi-norms

Let $(E, \|\cdot\|)$ be a complex Banach lattice.

Then E is **monotonically bounded** if every increasing net in $E_{[1]}^+$ is bounded above, and **complete** if if every non-empty subset which is bounded above has a supremum.

Examples $L^p(\Omega)$, $L^{\infty}(\Omega)$, or C(K) with the usual norms and the obvious lattice operations.

Each Banach lattice L^p (for $p \in [1, \infty]$) and C(K) (for K compact) is monotonically bounded, but c_0 is not monotonically bounded.

Each L^p -space is complete, but C(K) is complete iff K is Stonean.

The Banach lattice multi-norm

Definition Let $(E, ||\cdot||)$ be a Banach lattice. For $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in E$, set

$$\|(x_1,\ldots,x_n)\|_n^L = \||x_1| \vee \cdots \vee |x_n|\|$$
.

Then $((E^n, \|\cdot\|_n) : n \in \mathbb{N})$ is a multi-Banach space. It is the **Banach lattice multi-norm**.

It generalizes the standard p-multi-norm on $L^p(\Omega)$ and the minimum multi-norms on $L^\infty(\Omega)$ and C(K).

Multi-bounded sets

Let $(E^n, \|\cdot\|_n)$ be a multi-normed space. A subset B of E is **multi-bounded** if

$$c_B := \sup_{n \in \mathbb{N}} \{ \|(x_1, \dots, x_n)\|_n : x_1, \dots, x_n \in B \} < \infty.$$

For example:

Theorem Let E be a monotonically bounded Banach lattice. Then a subset of E is multibounded (for the lattice multi-norm) if and only if it is order-bounded.

Let $(E^n, \|\cdot\|_n)$ and $(F^n, \|\cdot\|_n)$ be multi-Banach spaces. An operator $T \in \mathcal{B}(E, F)$ is **multi-bounded** if T(B) is multi-bounded in F whenever B is multi-bounded in E. The set of these is a linear subspace $\mathcal{M}(E, F)$ of $\mathcal{B}(E, F)$.

Multi-bounded is the same as 'multi-continuous'.

Multi-bounded operators

For $T \in \mathcal{M}(E, F)$, define

$$||T||_{mb} = \sup\{c_{T(B)} : c_B \le 1\}.$$

Theorem $((\mathcal{M}(E,F), \|\cdot\|_{mb})$ is a Banach space, and $\mathcal{M}(E)$ is a Banach operator algebra. \square

[Recall that $\mathcal{M}(E,F)$ depends on the multinorm structure, and not just on the Banach space, despite the notation.]

In fact, $((\mathcal{M}(E,F)^n, \|\cdot\|_n^{mb}) : n \in \mathbb{N})$ is a multi-Banach space for a suitable multi-norm.

Theorem We can specifically identify the Banach algebra $\mathcal{M}(E)$ in many cases; for example, when E is a complete Banach lattice, it is just the algebra of 'regular' operators.

(p,q)-multi-bounded subset

Let E be a Banach space, and suppose that $1 \le p \le q < \infty$. Consider the (p,q)-multi-norm based on E, and consider the minimum multi-norm based on ℓ^1 . Then we write $\mathcal{B}_{p,q}(\ell^1,E)$ for the multi-bounded operators in this case.

Theorem $T \in \mathcal{B}_{p,q}(\ell^1, E)$ if and only if the dual $T' \in \mathcal{B}(E', \ell^\infty)$ is (q, p)-summing.

The following uses the Pietsch factorization theorem and a theorem of Maurey on the relations of spaces of summing operators.

Theorem Let Ω be a measure space, and take p,q with $1 \leq p \leq q < \infty$. Then every (p,q)-multi-bounded subset of $L^1(\Omega)$ is relatively weakly compact.

(p,q)-invariant means

Let G be a locally compact group, and take p,q with $1 \le p \le q < \infty$. A mean $\Lambda \in L^{\infty}(G)'$ is (p,q)-invariant if the set $\{s \cdot \Lambda : s \in G\}$ is (p,q)-multi-bounded. The group G is (p,q)-amenable if there is such a mean.

Theorem In fact, G is (p,q)-amenable if and only if it is amenable.

Proof This uses the above weak compactness, the Krein–Smulyan theorem, and the Ryll-Nard-zewski fixed point theorem.

Proof of the conjecture

Theorem Take $p \in (1, \infty)$. Then $L^p(G)$ is injective as a Banach left $L^1(G)$ -module if and only if G is amenable.

Proof We modify $J = \mathcal{B}(L^1(G), L^p(G))$ to obtain a Banach left $L^1(G)$ -module \widetilde{J} , and then, from the definition of injectivity, obtain a morphism R from \widetilde{J} to $L^p(G)$ with suitable properties. We use R to construct a net of continuous linear functionals (Λ_V) on $L^\infty(G)$, and take a weak-* accumulation point Λ . A calculation shows that Λ is a (p,p)-invariant mean, and so, by the earlier theorem, G is amenable.

The problem of duality

Let E be a Banach space, and let $(\|\cdot\|_n)$ be a multi-norm on $\{E^n:n\in\mathbb{N}\}.$

We might expect that the dual of the multinormed space is $\mathcal{M}(E,\mathbb{C})$. But this gives just E', and forgets the multi-norm structure.

We could try: $\|\cdot\|_n'$ is the norm on $(E')^n$ which is the dual of the norm $\|\cdot\|_n$ on E^n . But we obtain a dual multi-norm, not a multi-norm, so this fails.

We enter a rather long story to obtain a multidual space; we are guided by classical notions of orthogonality.

Hermitian decompositions

Definition Let $(E, \|\cdot\|)$ be a normed space. A direct sum decomposition $E = E_1 \oplus \cdots \oplus E_k$ is **hermitian** if

$$\|\zeta_1x_1+\cdots+\zeta_kx_k\|\leq \|x_1+\cdots+x_k\|$$
 for all $\zeta_1,\ldots,\zeta_k\in\overline{\mathbb{D}}$ and $x_1\in E_1,\ldots,x_k\in E_k.$

The decomposition is hermitian iff the projections are hermitian operators in the sense of numerical range theory.

Fact Let $E=E_1\oplus\cdots\oplus E_k$ be a hermitian decomposition of a Banach space E. Then

$$E' = E_1' \oplus \cdots \oplus E_k'$$

is a hermitian decomposition of E'.

Small decompositions

Definition Let $((E^n, ||\cdot||_n) : n \in \mathbb{N})$ be a multinormed space, and let $E = E_1 \oplus \cdots \oplus E_k$ be a direct sum decomposition of E. Then:

1) the decomposition is **small** if

$$\|P_1x_1+\dots+P_kx_k\|\leq \|(x_1,\dots,x_k)\|_k$$
 for all $x_1,\dots,x_k\in E$;

2) the decomposition is orthogonal if

$$||x_1 + \dots + x_k|| = ||(x_1, \dots, x_k)||_k$$

whenever $x_i \in E_i$ for i = 1, ..., k. (Actually a slightly more complicated definition is required.)

Theorem Small \Rightarrow orthogonal \Rightarrow hermitian. \Box

Aggravating question Is there an orthogonal decomposition that is not small?

Decompositions and Banach lattices

Let E be a Banach lattice. Recall that the lattice multi-norms are defined by

$$\|(x_1,\ldots,x_n)\|_n^L=\|\,|x_1|\vee\cdots\vee|x_n|\,\|$$
 for $x_1,\ldots,x_n\in E.$

Recall also that $E = E_1 \oplus_{\perp} \cdots \oplus_{\perp} E_n$ is a **band decomposition** if $|x_i| \wedge |x_j| = 0$ whenever $x_i \in E_i$, $x_j \in E_j$, and $i \neq j$.

Easy: a band decomposition is small, and hence orthogonal, for the lattice multi-norm. What about the converse?

Kalton's theorem

Let $E = E_1 \oplus \cdots \oplus E_k$ be orthogonal with respect to the lattice multi-norm. Then

$$||x_1| \lor \cdots \lor |x_k|| = ||x_1 + \cdots + x_k||$$
 whenever $x_1 \in E_1, \dots, x_k \in E_k$.

Theorem - Nigel Kalton Ka This already implies that the decomposition is a band decomposition (for complex Banach lattices).

[In fact Kalton shows that the complex linear span of the hermitian operators on a Banach lattice is a C^* -algebra.]

Theorem Let E be a (complex) Banach lattice. Then the following properties of a decomposition are equivalent:

- (a) it is a band decomposition;
- (b) it is orthogonal for the lattice multi-norm;
- (c) it is small for the lattice multi-norm. \Box

Orthogonality - Examples

- (1) Let H be a Hilbert space with the Hilbert multi-norms. Then decompositions are orthogonal/small/hermitian if and only if they are orthogonal in the classical sense.
- (2) Let $E = \ell^p(S)$ have the standard p-multinorm. Then a decomposition $E = E_1 \oplus \cdots \oplus E_k$ is orthogonal/small/hermitian if and only if there is a partition $\{S_1, \ldots, S_k\}$ of S such that $E_j = \ell^p(S_j)$ $(j = 1, \ldots, k)$.
- (3) Let $E = \ell^p(S)$ have the standard (p,q)-multi-norm, with $q \neq p$. Then there are no non-trivial orthogonal decompositions of E.
- (4) Take K compact, and let C(K) have any multi-norm. Then a decomposition $C(K) = E_1 \oplus \cdots \oplus E_k$ is orthogonal/small/hermitian if and only if there is a partition $\{K_1, \ldots, K_k\}$ of K into clopen sets such that $E_j = C(K_j)$ $(j = 1, \ldots, k)$.

Families of decompositions

Definition Let $(E, \|\cdot\|)$ be a normed space, and consider a family \mathcal{K} of direct sum decompositions of E. Then \mathcal{K} is **closed** provided that the following conditions are satisfied:

(C1) $E_{\sigma(1)} \oplus \cdots \oplus E_{\sigma(n)} \in \mathcal{K}$ whenever $n \in \mathbb{N}$, $\sigma \in \mathfrak{S}_n$, and $E_1 \oplus \cdots \oplus E_n \in \mathcal{K}$;

(C2) $F \oplus E_3 \oplus \cdots \oplus E_n \in \mathcal{K}$ whenever $n \geq 3$, $E_1 \oplus \cdots \oplus E_n \in \mathcal{K}$, and $F = E_1 \oplus E_2$;

(C3) \mathcal{K} contains the family of all trivial direct sum decompositions.

The families \mathcal{K}_{herm} of all hermitian decompositions, \mathcal{K}_{small} of all small decompositions, and \mathcal{K}_{orth} of all orthogonal decompositions are closed families of decompositions.

Multi-norms from families of decompositions

Let $(E, \|\cdot\|)$ be a normed space, and consider a closed family \mathcal{K} of hermitian decompositions of E. For $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in E$, set

$$\|(x_1,\ldots,x_n)\|_n^{\mathcal{K}} = \sup\{\|P_1x_1+\cdots+P_nx_n\|\}.$$

Then $((E^n, \|\cdot\|_n^{\mathcal{K}}) : n \in \mathbb{N})$ is a multi-normed space, and each member of \mathcal{K} is a small decomposition of E with respect to this multi-norm. This is the multi-norm **generated** by \mathcal{K} .

For example, the family of trivial decompositions generates the minimum multi-norm.

Duals of hermitian decompositions

Consider a closed family K of hermitian decompositions of E. The dual family is

$$\mathcal{K}' = \{E_1' \oplus \cdots \oplus E_k' : E_1 \oplus \cdots \oplus E_k \in \mathcal{K}\},$$
 and it generates a multi-norm $(\|\cdot\|_{n,\mathcal{K}}^{\dagger} : n \in \mathbb{N})$ on the family $\{(E')^n : n \in \mathbb{N}\}.$

Dual multi-norms

Definition Let $(E, \|\cdot\|)$ be a normed space, and let \mathcal{K} be a closed family of hermitian decompositions of E. Then the multi-norm on $\{(E')^n : n \in \mathbb{N}\}$ generated by \mathcal{K}' is denoted by

$$(\|\cdot\|_{n,\mathcal{K}}^{\dagger}:n\in\mathbb{N}).$$

The multi-normed space

$$(((E')^n, \|\cdot\|_{n,\mathcal{K}}^{\dagger}) : n \in \mathbb{N})$$

is the **multi-dual space** with respect to \mathcal{K} .

Theorem For complete Banach lattices, the family \mathcal{K} of band decompositions (so that $\mathcal{K} = \mathcal{K}_{small} = \mathcal{K}_{orth}$) generates the lattice multinorm, and the family \mathcal{K}' generates the lattice multinorm on E'.

We have **multi-biduals**, **multi-reflexive spaces**, and quite a few examples,... and queries.

A consequence of duality

We have the following, which was one point of the definitions.

Theorem For $1 , let the families <math>\{(\ell^p)^n : n \in \mathbb{N}\}$ have the standard p-multi-norm. Then the multi-dual of the multi-normed space $\{(\ell^p)^n : n \in \mathbb{N}\}$ is $\{(\ell^q)^n : n \in \mathbb{N}\}$ with the standard q-multi-norm, where q = p'. Hence these multi-normed spaces are multi-reflexive.

Starting from a multi-norm

We start from a multi-normed space $(E^n, \|\cdot\|_n)$. The theory works if the multi-norm is **orthogonal** in the sense that

$$\|(x_1,\ldots,x_n)\|_n = \sup\{\|P_1x_1+\cdots+P_nx_n\|\},$$

for all $x_1, \ldots, x_n \in E$, taking the supremum over all small decompositions of E. Then we have a multi-dual space.

For example, what properties of a normed space E and/or p,q mean that the (p,q)-multi-norm on E is orthogonal - and, when it is, what is the multi-dual?

And what does this say for the embryonic theory of multi-Banach algebras?

References

- **DP1**: H. G. Dales and M. E. Polyakov, Homological properties of modules over group algebras, *Proc. London Math. Soc.*, (3) 89 (2004), 390–426.
- **DP2**: H. G. Dales and M. E. Polyakov, Multinormed spaces, preprint.
- **DDPR1**: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, Multi-norms and the injectivity of $L^p(G)$, arXiv:1101.4320v1 [math.FA].
- **DDPR2**: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, *Equivalence of multi-norms*, in preparation.
- **DDPR3**: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, *Multi-norms and the amenabil-ity of groups*, in preparation.
- **Ka**: N. J. Kalton, Hermitian operators on complex Banach lattices and a problem of Garth Dales, *J. London Math. Soc.*, submitted.