Abstract Harmonic Analysis & Quantum Information Theory

Jason Crann

School of Mathematics & Statistics, Carleton University

Banach Algebras 2011, University of Waterloo

Outline

- Quantum Channels
- Quantum Group Channels
- 3 Examples & Applications
- 4 Kac-Paljutkin Algebra

Outline

- Quantum Channels
- Quantum Group Channels
- 3 Examples & Applications
- 4 Kac-Paljutkin Algebra

Definition

Let H be a Hilbert space. A quantum state on H is a positive trace-class operator $\rho \in \mathcal{T}(H)$ of trace 1. We denote the set of states on H by $\mathcal{D}(H)$.

Examples:

- Qubits: $\mathcal{D}(\mathbb{C}^2)$, e.g., spin-1/2 particle, photon.
- *n*-qubits $\mathcal{D}((\mathbb{C}^2)^{\otimes^n})$.
- Hydrogen orbitals $\mathcal{D}(L^2(\mathbb{R}^3))$.

Quantum systems are open $\leadsto H_{total} = E \otimes H$

Quantum systems are open $\rightsquigarrow H_{total} = E \otimes H \rightsquigarrow$ complete positivity.

Quantum systems are open $\rightsquigarrow H_{total} = E \otimes H \rightsquigarrow$ complete positivity.

Definition

A quantum channel is a completely positive trace preserving (CPTP) map $\Phi: \mathcal{T}(H) \to \mathcal{T}(H)$ (Schrödinger picture).

Quantum systems are open $\rightsquigarrow H_{total} = E \otimes H \rightsquigarrow$ complete positivity.

Definition

A quantum channel is a completely positive trace preserving (CPTP) map $\Phi: \mathcal{T}(H) \to \mathcal{T}(H)$ (Schrödinger picture).

 $\Phi^* : \mathcal{B}(H) \to \mathcal{B}(H)$ is a normal, unital CP (UCP) - evolution of observables (*Heisenberg picture*).

Quantum systems are open $\rightsquigarrow H_{total} = E \otimes H \rightsquigarrow$ complete positivity.

Definition

A quantum channel is a completely positive trace preserving (CPTP) map $\Phi: \mathcal{T}(H) \to \mathcal{T}(H)$ (Schrödinger picture).

 $\Phi^* : \mathcal{B}(H) \to \mathcal{B}(H)$ is a normal, unital CP (UCP) - evolution of observables (*Heisenberg picture*).

Alternative definition: A normal UCP map $\Phi : \mathcal{B}(H) \to \mathcal{B}(H)$.

Theorem (Haagerup '80; Blecher-Smith '92)

 $\Phi\in\mathcal{CB}^\sigma(\mathcal{B}(H))$ is CP if and only if \exists a net $(a_i)_{i\in I}$ in $\mathcal{B}(H)$ such that

$$\Phi(x) = w^* - \sum_{i \in I} a_i x a_i^*, \quad x \in \mathcal{B}(H).$$

Theorem (Haagerup '80; Blecher-Smith '92)

 $\Phi\in\mathcal{CB}^\sigma(\mathcal{B}(H))$ is CP if and only if \exists a net $(a_i)_{i\in I}$ in $\mathcal{B}(H)$ such that

$$\Phi(x) = w^* - \sum_{i \in I} a_i x a_i^*, \quad x \in \mathcal{B}(H).$$

Terminology:

- Φ is trace preserving (TP) if $w^* \sum_{i \in I} a_i^* a_i = I$.
- Φ is bistochastic (BS) if it is UCP & TP.
- $(a_i)_{i \in I}$ are the Kraus operators of Φ .

Outline

- Quantum Group Channels

Locally Compact Quantum Groups

Definition (Kustermans-Vaes '00)

A LCQG $\mathbb{G} = (M, \Gamma, \varphi, \psi)$

- M is a von Neumann algebra
- $\Gamma: M \to M \bar{\otimes} M$ is a co-multiplication: normal, unital, isometric *-homomorphism, co-associative

$$(\Gamma \otimes \iota) \circ \Gamma = (\iota \otimes \Gamma) \circ \Gamma$$

• φ is a left Haar weight on M:

$$\varphi((\omega \otimes \iota)\Gamma(x)) = \omega(1)\varphi(x), \quad x \in \mathcal{M}_{\varphi}, \omega \in \mathcal{M}_*$$

• ψ is a right Haar weight on M:

$$\psi((\iota \otimes \omega)\Gamma(x)) = \omega(1)\psi(x), \quad x \in \mathcal{M}_{\psi}, \omega \in M_*$$

Theorem (Kustermans-Vaes '00)

There is a dual quantum group $\hat{\mathbb{G}}$ such that $\hat{\hat{\mathbb{G}}}=\mathbb{G}.$

Theorem (Kustermans-Vaes '00)

There is a dual quantum group $\hat{\mathbb{G}}$ such that $\hat{\hat{\mathbb{G}}} = \mathbb{G}$.

$$\mathbb{G}_{a} = (L^{\infty}(G), \Gamma_{a}, \varphi, \psi), \quad \Gamma_{a}(f)(s, t) = f(st)$$

Theorem (Kustermans-Vaes '00)

There is a dual quantum group $\hat{\mathbb{G}}$ such that $\hat{\mathbb{G}} = \mathbb{G}$.

$$\mathbb{G}_a = (L^{\infty}(G), \Gamma_a, \varphi, \psi), \quad \Gamma_a(f)(s, t) = f(st)$$

$$\hat{\mathbb{G}}_{s} = \mathbb{G}_{s} = (VN(G), \Gamma_{s}, \varphi), \quad \Gamma_{s}(\lambda(s)) = \lambda(s) \otimes \lambda(s)$$

Theorem (Kustermans-Vaes '00)

There is a dual quantum group $\hat{\mathbb{G}}$ such that $\hat{\hat{\mathbb{G}}}=\mathbb{G}.$

$$\mathbb{G}_a = (L^{\infty}(G), \Gamma_a, \varphi, \psi), \quad \Gamma_a(f)(s, t) = f(st)$$

$$\hat{\mathbb{G}}_{\mathsf{a}} = \mathbb{G}_{\mathsf{s}} = (\mathsf{VN}(\mathsf{G}), \mathsf{\Gamma}_{\mathsf{s}}, \varphi), \quad \mathsf{\Gamma}_{\mathsf{s}}(\lambda(\mathsf{s})) = \lambda(\mathsf{s}) \otimes \lambda(\mathsf{s})$$

Kac-Paljutkin Algebra: $\mathbb{G}_8 = (VN(G_8), \Gamma_O, \varphi)$ where

- $G_8 = (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes_{\alpha} \mathbb{Z}_2$, α is permutation
- $\Gamma_{\Omega}(x) = \Omega \Gamma_{s}(x) \Omega^{*}$
- Ω is a unitary in $VN(G_8) \otimes VN(G_8)$.

Universal C*-Algebra

Notation:
$$L^{\infty}(\mathbb{G}) := M$$
, $L^{1}(\mathbb{G}) := M_{*}$, $L^{2}(\mathbb{G}) := L^{2}(M, \varphi)$.

Theorem (Kustermans '01)

For every \mathbb{G} there exists a universal C^* -algebra $C_u(\mathbb{G})$ such that $C_u(\mathbb{G})^*$ is a Banach algebra containing $L^1(\mathbb{G})$ as a closed ideal.

Universal C^* -Algebra

Notation: $L^{\infty}(\mathbb{G}) := M$, $L^{1}(\mathbb{G}) := M_{*}$, $L^{2}(\mathbb{G}) := L^{2}(M, \varphi)$.

Theorem (Kustermans '01)

For every \mathbb{G} there exists a universal C^* -algebra $C_u(\mathbb{G})$ such that $C_u(\mathbb{G})^*$ is a Banach algebra containing $L^1(\mathbb{G})$ as a closed ideal.

•
$$C_u(\mathbb{G}_a) = C_0(G)$$
 and $C_u(\mathbb{G}_s) = C^*(G)$.

Notation:
$$L^{\infty}(\mathbb{G}) := M$$
, $L^{1}(\mathbb{G}) := M_{*}$, $L^{2}(\mathbb{G}) := L^{2}(M, \varphi)$.

Theorem (Kustermans '01)

For every \mathbb{G} there exists a universal C^* -algebra $C_u(\mathbb{G})$ such that $C_u(\mathbb{G})^*$ is a Banach algebra containing $L^1(\mathbb{G})$ as a closed ideal.

• $C_u(\mathbb{G}_a) = C_0(G)$ and $C_u(\mathbb{G}_s) = C^*(G)$.

Definition

A positive definite functional on \mathbb{G} is an element of $(C_u(\mathbb{G})^*)^+$.

•
$$\mathcal{P}(\mathbb{G}_a) = M^+(G)$$
 and $\mathcal{P}(\mathbb{G}_s) = \mathcal{P}(G)$.

Universal C*-Algebra

Notation: $L^{\infty}(\mathbb{G}) := M$, $L^{1}(\mathbb{G}) := M_{*}$, $L^{2}(\mathbb{G}) := L^{2}(M, \varphi)$.

Theorem (Kustermans '01)

For every \mathbb{G} there exists a universal C^* -algebra $C_u(\mathbb{G})$ such that $C_{\mu}(\mathbb{G})^*$ is a Banach algebra containing $L^1(\mathbb{G})$ as a closed ideal.

Examples & Applications

• $C_{\mu}(\mathbb{G}_a) = C_0(G)$ and $C_{\mu}(\mathbb{G}_s) = C^*(G)$.

Definition

A positive definite functional on \mathbb{G} is an element of $(C_{\mu}(\mathbb{G})^*)^+$.

- $\mathcal{P}(\mathbb{G}_a) = M^+(G)$ and $\mathcal{P}(\mathbb{G}_s) = \mathcal{P}(G)$.
- $\mu \in C_{\mu}(\mathbb{G})^* \rightsquigarrow m_{\mu} \in \mathcal{CB}(L^1(\mathbb{G})) \rightsquigarrow$ $(m_{\mu})^* = \Theta(\mu) \in \mathcal{CB}^{\sigma}(\mathcal{B}(L^2(\mathbb{G})))$ (J-N-R '09)

Theorem (Kalantar-Neufang-Ruan '11)

If $\mu \in \mathcal{P}_1(\mathbb{G})$ then $\Theta(\mu)$ is UCP, i.e., a quantum channel.

Theorem (Kalantar-Neufang-Ruan '11)

If $\mu \in \mathcal{P}_1(\mathbb{G})$ then $\Theta(\mu)$ is UCP, i.e., a quantum channel.

Classical HA: 1-1 correspondence between $\mathcal{P}(G)$ and unitary reps of G.

Theorem (Kalantar-Neufang-Ruan '11)

If $\mu \in \mathcal{P}_1(\mathbb{G})$ then $\Theta(\mu)$ is UCP, i.e., a quantum channel.

Classical HA: 1-1 correspondence between $\mathcal{P}(G)$ and unitary reps of G.

Quantum HA: 1-1 correspondence between $\mathcal{P}(\mathbb{G})$ and unitary co-reps of $\hat{\mathbb{G}}$ (*Kustermans* '01).

Theorem (Kalantar-Neufang-Ruan '11)

If $\mu \in \mathcal{P}_1(\mathbb{G})$ then $\Theta(\mu)$ is UCP, i.e., a quantum channel.

Classical HA: 1-1 correspondence between $\mathcal{P}(G)$ and unitary reps of G.

Quantum HA: 1-1 correspondence between $\mathcal{P}(\mathbb{G})$ and unitary co-reps of $\hat{\mathbb{G}}$ (Kustermans '01).

Theorem (C)

If $\mu = (\pi, \xi) \in \mathcal{P}_1(\mathbb{G})$ is given by U_{μ} , then

$$\Theta(\mu)(x) = w^* - \sum_{i \in I} U_i^* x U_i, \quad x \in \mathcal{B}(L^2(\mathbb{G}))$$

where $U_i = (\omega_{\xi,e_i} \otimes \iota)(U_{\mu}), (e_i)_{i \in I}$ o.n. basis for H_{μ} .

Outline

- Examples & Applications

$$G = \mathbb{Z}_2$$

• $L^{\infty}(\mathbb{Z}_2)$: Bit-flip channel

$$\Theta(\mu)(\rho) = \mu(0)\rho + \mu(1)X\rho X$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \lambda(1).$$

• $L^{\infty}(\mathbb{Z}_2)$: Bit-flip channel

$$\Theta(\mu)(\rho) = \mu(0)\rho + \mu(1)X\rho X$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \lambda(1).$$

• $VN(\mathbb{Z}_2)$: Phase-flip channel

$$\hat{\Theta}(\varphi)(\rho) = p\rho + (1-p)Z\rho Z$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = M_{\chi(1)}, \ \varphi = p\chi(0) + (1-p)\chi(1).$$

• $L^{\infty}(\mathbb{Z}_2)$: Bit-flip channel

$$\Theta(\mu)(\rho) = \mu(0)\rho + \mu(1)X\rho X$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \lambda(1).$$

• $VN(\mathbb{Z}_2)$: Phase-flip channel

$$\hat{\Theta}(\varphi)(\rho) = p\rho + (1-p)Z\rho Z$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = M_{\chi(1)}, \ \varphi = p\chi(0) + (1-p)\chi(1).$$

Dual Channels

$$|G| < \infty$$

• $\forall \mu \in M_1^+(G)$

$$\Theta(\mu)(\rho) = \sum_{s \in G} \mu(s) \lambda(s^{-1}) \rho \lambda(s)$$

is random unitary \Rightarrow BS quantum channel.

• $\forall \mu \in M_1^+(G)$

$$\Theta(\mu)(\rho) = \sum_{s \in G} \mu(s) \lambda(s^{-1}) \rho \lambda(s)$$

is random unitary \Rightarrow BS quantum channel.

• Fixed points $\mathcal{H}_{\Theta(\mu)} = (\mathcal{H}_{\mu} \cup \mathcal{R}(G))''$ always contain (*K-N-R* '11)

$$\mathcal{R}(G) \cong \bigoplus_{[\pi] \in \hat{G}} I_{d_{\pi}} \otimes M_{d_{\pi}}(\mathbb{C})$$

• $\forall \mu \in M_1^+(G)$

$$\Theta(\mu)(\rho) = \sum_{s \in G} \mu(s) \lambda(s^{-1}) \rho \lambda(s)$$

is random unitary \Rightarrow BS quantum channel.

• Fixed points $\mathcal{H}_{\Theta(\mu)} = (\mathcal{H}_{\mu} \cup \mathcal{R}(G))''$ always contain (*K-N-R* '11)

$$\mathcal{R}(G) \cong \bigoplus_{[\pi] \in \hat{G}} I_{d_{\pi}} \otimes M_{d_{\pi}}(\mathbb{C})$$

• Noiseless Subsystems method of quantum error correction.

$$|G| < \infty$$

• $\mathcal{P}_1(G) \ni \varphi(s) = \langle \pi(s)\xi, \xi \rangle$. If $\langle (e_i)_{i=1}^{d_{\pi}} \rangle = H_{\pi}$, then

$$\hat{\Theta}(\varphi)(\rho) = \sum_{i=1}^{d_{\pi}} M_{\xi_i} \rho M_{\xi_i}^*$$

is a BS quantum channel where $\xi_i(s) = \langle e_i, \pi(s)\xi \rangle$.

$$|G| < \infty$$

• $\mathcal{P}_1(G) \ni \varphi(s) = \langle \pi(s)\xi, \xi \rangle$. If $\langle (e_i)_{i=1}^{d_{\pi}} \rangle = H_{\pi}$, then

$$\hat{\Theta}(\varphi)(\rho) = \sum_{i=1}^{d_{\pi}} M_{\xi_i} \rho M_{\xi_i}^*$$

is a BS quantum channel where $\xi_i(s) = \langle e_i, \pi(s)\xi \rangle$.

• Dual to random unitaries $\Theta(\mu)$

• $\mathcal{P}_1(G) \ni \varphi(s) = \langle \pi(s)\xi, \xi \rangle$. If $\langle (e_i)_{i=1}^{d_{\pi}} \rangle = H_{\pi}$, then

$$\hat{\Theta}(\varphi)(\rho) = \sum_{i=1}^{d_{\pi}} M_{\xi_i} \rho M_{\xi_i}^*$$

is a BS quantum channel where $\xi_i(s) = \langle e_i, \pi(s)\xi \rangle$.

- Dual to random unitaries $\Theta(\mu)$
- Question: Which $\hat{\Theta}(\varphi)$ are outside $\mathcal{RU}_{|G|}$?

Asymptotic Quantum Birkoff Conjecture

Theorem (Birkoff)

The set of $d \times d$ bistochasitc matrices is a convex set whose extreme points are the d! permutation matrices.

Asymptotic Quantum Birkoff Conjecture

Theorem (Birkoff)

The set of $d \times d$ bistochasitc matrices is a convex set whose extreme points are the d! permutation matrices.

 For d > 2 direct quantum generalization is false (Landau-Streater '93).

Asymptotic Quantum Birkoff Conjecture

Theorem (Birkoff)

The set of $d \times d$ bistochasite matrices is a convex set whose extreme points are the d! permutation matrices.

 For d > 2 direct quantum generalization is false (Landau-Streater '93).

AQBC

Any BS channel $\Phi: M_d(\mathbb{C}) \to M_d(\mathbb{C})$ satisfies

$$\lim_{n\to\infty} \|\Phi^{\otimes^n} - \mathcal{R}\mathcal{U}(M_d(\mathbb{C})^{\otimes^n})\|_{cb} = 0.$$

Asymptotic Quantum Birkoff Conjecture

Theorem (Birkoff)

The set of $d \times d$ bistochasitc matrices is a convex set whose extreme points are the d! permutation matrices.

 For d > 2 direct quantum generalization is false (Landau-Streater '93).

AQBC

Any BS channel $\Phi: M_d(\mathbb{C}) \to M_d(\mathbb{C})$ satisfies

$$\lim_{n\to\infty} \|\Phi^{\otimes^n} - \mathcal{R}\mathcal{U}(M_d(\mathbb{C})^{\otimes^n})\|_{cb} = 0.$$

Recently proved false (Haagerup-Musat '11, Shor-Oza-Ostrev '11)

Maximally Extreme Positive Definite Functions

Let $|G| < \infty$.

Definition

 $\varphi \in \mathcal{P}_1(G)$ is maximally extreme if $\hat{\Theta}(\varphi) \in \mathcal{E}(\mathcal{BS}_{|G|})$.

Maximally Extreme Positive Definite Functions

Let $|G| < \infty$.

Definition

 $\varphi \in \mathcal{P}_1(G)$ is maximally extreme if $\hat{\Theta}(\varphi) \in \mathcal{E}(\mathcal{BS}_{|G|})$.

Theorem (Haagerup-Musat '11; C)

If $\varphi \in \mathcal{P}_1(G)$ is maximally extreme with $d_\pi \geq 2$, then $\hat{\Theta}(\varphi)$ does not satisfy AQBC.

Maximally Extreme Positive Definite Functions

Let $|G| < \infty$.

Definition

 $\varphi \in \mathcal{P}_1(G)$ is maximally extreme if $\hat{\Theta}(\varphi) \in \mathcal{E}(\mathcal{BS}_{|G|})$.

Theorem (Haagerup-Musat '11; C)

If $\varphi \in \mathcal{P}_1(G)$ is maximally extreme with $d_\pi \geq 2$, then $\hat{\Theta}(\varphi)$ does not satisfy AQBC.

Question: When is φ maximally extreme?

Geometric Interpretation

 $\pi:\mathcal{G}\to\mathcal{B}(\mathbb{C}^2)$ acts by conjugation on the Bloch Sphere:

$$\mathcal{D}(\mathbb{C}^2)\ni
ho=rac{1}{2}(I+\overrightarrow{r_
ho}\cdot\overrightarrow{\sigma})$$

where $\overrightarrow{\sigma} = (X, Y, Z)$ - Pauli matrices, $\overrightarrow{r_{\rho}} \in \mathbb{R}^3$, $\|\overrightarrow{r_{\rho}}\| \leq 1$.

Geometric Interpretation

 $\pi: \mathcal{G} \to \mathcal{B}(\mathbb{C}^2)$ acts by conjugation on the Bloch Sphere:

$$\mathcal{D}(\mathbb{C}^2)
i
ho = \frac{1}{2} (I + \overrightarrow{r_
ho} \cdot \overrightarrow{\sigma})$$

where $\overrightarrow{\sigma}=(X,Y,Z)$ - Pauli matrices, $\overrightarrow{r_{\rho}}\in\mathbb{R}^3$, $\|\overrightarrow{r_{\rho}}\|\leq 1$.

For
$$\xi \in \mathbb{C}^2$$
, define $\overrightarrow{r_g} \cong P_{\pi(g)\xi} \Rightarrow \varphi = (\pi, \xi) \cong (\overrightarrow{r_g})$

 $\pi:\mathcal{G} \to \mathcal{B}(\mathbb{C}^2)$ acts by conjugation on the Bloch Sphere:

$$\mathcal{D}(\mathbb{C}^2)
i
ho = \frac{1}{2} (I + \overrightarrow{r_
ho} \cdot \overrightarrow{\sigma})$$

where $\overrightarrow{\sigma}=(X,Y,Z)$ - Pauli matrices, $\overrightarrow{r_{\rho}}\in\mathbb{R}^3$, $\|\overrightarrow{r_{\rho}}\|\leq 1$.

For $\xi \in \mathbb{C}^2$, define $\overrightarrow{r_g} \cong P_{\pi(g)\xi} \Rightarrow \varphi = (\pi, \xi) \cong (\overrightarrow{r_g})$

Theorem (Helm-Strunz '09; C)

 $\varphi = (\pi, \xi) \in \mathcal{P}_1(G)$ is maximally extreme $\Leftrightarrow Aff(\overrightarrow{r_g})_{g \in G} = \mathbb{R}^3$, i.e., $vol(cov(\overrightarrow{r_g})_{g \in G}) > 0$.

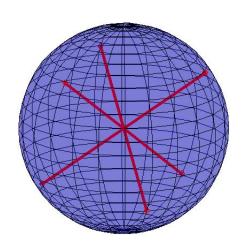
$$G=S_3$$

 $\pi: \mathcal{S}_3 o \mathcal{B}(\mathbb{C}^2)$ 2d irred rep

$$\xi = \frac{1}{\sqrt{5}}(-1,2i)$$

$$\varphi = (\pi, \xi)$$
 is

maximally extreme

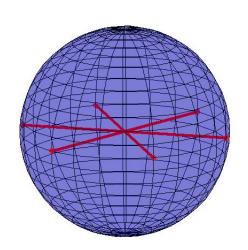


$$G=S_3$$

 $\pi: \mathcal{S}_3 o \mathcal{B}(\mathbb{C}^2)$ 2d irred rep $\xi = rac{1}{\sqrt{2}}(-1,i)$

not maximally extreme

 $\varphi = (\pi, \xi)$ is



Outline

- Mac-Paljutkin Algebra

$$\mathbb{G}_8 = (\mathit{VN}(G_8), \Gamma_\Omega, \varphi), \quad G_8 = (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes_{\alpha} \mathbb{Z}_2$$

$$\mathbb{G}_8 = (VN(G_8), \Gamma_{\Omega}, \varphi), \quad G_8 = (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes_{\alpha} \mathbb{Z}_2$$

Fundamental Unitary W: $\Gamma_{\Omega}(x) = W^*(1 \otimes x)W$, $x \in VN(G_8)$.

$$\mathbb{G}_8 = (VN(G_8), \Gamma_{\Omega}, \varphi), \quad G_8 = (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes_{\alpha} \mathbb{Z}_2$$

Fundamental Unitary W: $\Gamma_{\Omega}(x) = W^*(1 \otimes x)W$, $x \in VN(G_8)$.

$$L^{1}(\mathbb{G}_{8}) = (A(G_{8}), \star) \Rightarrow \mathcal{P}_{1}(\mathbb{G}_{8}) = \mathcal{P}_{1}(G_{8}),$$

$$\Theta(\mu)(x) = \sum_{i=1}^{8} W_{i}^{*} \times W_{i}, \quad x \in \mathcal{B}(L^{2}(G_{8}))$$

where
$$W_i = (\omega_{\xi,e_i} \otimes \iota)(W)$$
, $\mu = \omega_{\xi}$.

$$\mathbb{G}_8 = (VN(G_8), \Gamma_{\Omega}, \varphi), \quad G_8 = (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes_{\alpha} \mathbb{Z}_2$$

Fundamental Unitary W: $\Gamma_{\Omega}(x) = W^*(1 \otimes x)W$, $x \in VN(G_8)$.

$$L^{1}(\mathbb{G}_{8}) = (A(G_{8}), \star) \Rightarrow \mathcal{P}_{1}(\mathbb{G}_{8}) = \mathcal{P}_{1}(G_{8}),$$

$$\Theta(\mu)(x) = \sum_{i=1}^{8} W_{i}^{*} \times W_{i}, \quad x \in \mathcal{B}(L^{2}(G_{8}))$$

where $W_i = (\omega_{\xi,e_i} \otimes \iota)(W)$, $\mu = \omega_{\xi}$.

$$\mathcal{H}_{\Theta(\mu)} = (\mathcal{H}_{\mu} \cup L^{\infty}(\hat{\mathbb{G}}_8)')'' \quad (K\text{-N-R '11})$$

Idempotent States in $L^1(\mathbb{G}_8)$

$$\mathcal{H}_{\Theta(\mu)} = \mathcal{H}_{\Theta(\phi)}$$
, ϕ idempotent state in $L^1(\mathbb{G}_8)$ (K-N-R '11).

$$\mathcal{H}_{\Theta(\mu)} = \mathcal{H}_{\Theta(\phi)}$$
, ϕ idempotent state in $L^1(\mathbb{G}_8)$ (K-N-R '11).

F.d.
$$\Rightarrow \mu = \omega_{\xi}$$
 is idemp. iff $W\xi \otimes \xi = \xi \otimes \xi$. (Franz-Skalski '09)

$$\mathcal{H}_{\Theta(\mu)} = \mathcal{H}_{\Theta(\phi)}$$
, ϕ idempotent state in $L^1(\mathbb{G}_8)$ (K-N-R '11).

F.d.
$$\Rightarrow \mu = \omega_{\xi}$$
 is idemp. iff $W\xi \otimes \xi = \xi \otimes \xi$. (Franz-Skalski '09)

Solutions: $G_8 = \{e, s, a, as, b, bs, ab, abs\}$ - characteristic functions of

$$G_1 = \{e\}, \quad G_2 = \{e, b\}, \quad G_3 = \{e, ab\},$$

 $G_4 = \{e, ab, as, bs\}, \quad G_5 = \{e, s, ab, abs\},$
 $G_6 = \{e, a\}, \quad G_7 = \{e, a, b, ab\}, \quad G_8.$

Idempotent States in $L^1(\mathbb{G}_8)$

$$\mathcal{H}_{\Theta(\mu)} = \mathcal{H}_{\Theta(\phi)}, \ \phi \ \text{idempotent state in} \ L^1(\mathbb{G}_8) \ \ (K\text{-N-R '11}).$$

F.d.
$$\Rightarrow \mu = \omega_{\xi}$$
 is idemp. iff $W\xi \otimes \xi = \xi \otimes \xi$. (Franz-Skalski '09)

Solutions: $G_8 = \{e, s, a, as, b, bs, ab, abs\}$ - characteristic functions of

$$G_1 = \{e\}, \quad G_2 = \{e, b\}, \quad G_3 = \{e, ab\},$$

 $G_4 = \{e, ab, as, bs\}, \quad G_5 = \{e, s, ab, abs\},$
 $G_6 = \{e, a\}, \quad G_7 = \{e, a, b, ab\}, \quad G_8.$

For
$$i \neq 4, 5$$
, $\mathcal{H}_{\chi_i} = VN(G_i)$

Idempotent States in $L^1(\mathbb{G}_8)$

$$\mathcal{H}_{\Theta(\mu)} = \mathcal{H}_{\Theta(\phi)}, \ \phi \ \text{idempotent state in} \ L^1(\mathbb{G}_8) \ \ (K-N-R \ '11).$$

F.d.
$$\Rightarrow \mu = \omega_{\xi}$$
 is idemp. iff $W\xi \otimes \xi = \xi \otimes \xi$. (Franz-Skalski '09)

Solutions: $G_8 = \{e, s, a, as, b, bs, ab, abs\}$ - characteristic functions of

$$G_1 = \{e\}, \quad G_2 = \{e, b\}, \quad G_3 = \{e, ab\},$$

 $G_4 = \{e, ab, as, bs\}, \quad G_5 = \{e, s, ab, abs\},$
 $G_6 = \{e, a\}, \quad G_7 = \{e, a, b, ab\}, \quad G_8.$

For
$$i \neq 4, 5$$
, $\mathcal{H}_{\chi_i} = VN(G_i)$

$$\mathcal{H}_{\chi_4} = \operatorname{span}\{\lambda(e), \lambda(ab), -2i\lambda(as) - \lambda(s) + \lambda(abs), \lambda(as) + \lambda(bs)\}$$
$$\mathcal{H}_{\chi_5} = \operatorname{span}\{\lambda(e), \lambda(ab), -2i\lambda(s) - \lambda(as) + \lambda(bs), \lambda(s) + \lambda(abs)\}$$

Thank You!

$$\mu \star_{\Omega} \nu(r) = \sum_{g,h \in \mathbb{Z}_2^2} \sum_{s,t \in \mathbb{Z}_2^2} c(g,h) \overline{c(s,t)} \mu((g,e)r(s,e)) \nu((h,e)r(t,e))$$

Fundamental Unitary:

$$W = \sum_{r \in G_8} \sum_{x,y,s,t \in \mathbb{Z}_2^2} \overline{c(x,y)} c(s,t) \lambda(r)^* \lambda(\alpha_r(s),e) \lambda(x,e) \otimes M_{\delta_r} \lambda(\alpha_r(t),e) \otimes M_{\delta_r} \lambda(\alpha_r(t),e) \lambda(x,e) \otimes M_{\delta_r} \lambda(\alpha_r(t),e) \lambda(\alpha_r($$