Real Banach algebras as $C(\mathcal{K})$ -algebras

Fernando Albiac and Eggert Briem

We will give a proof using only real methods (i.e. a proof not involving complex function theory) of the following theorem.

Theorem Let A be a commutative unital real Banach algebra satisfying

(*)
$$r(a^2) \le r(a^2 + b^2)$$
 for all $a, b \in A$,

where r denotes the spectral radius, $r(a) = \lim ||a^n||^{1/n}$. Then there exists a compact Hausdorff space K and a homomorphism $\hat{}$ of A into C(K), the space of all real-valued continuous functions on K, such that $r(a) = \sup ||\hat{a}_{\infty,K}||$.

The main tool in the proof is the set A_+ of squares in A, and its closure $\operatorname{cl}(A_+)$. Clearly, condition (*) extends to $\operatorname{cl}(A_+)$. We frequently use the square root lemma, SQRT, which says that if $||a|| \leq 1$ or if r(a) < 1 then $e - a \in A_+$ where e is the unit in A. (See f.ex. T. W. Palmer's book on Banach algebras.)

Lemma 1 Let φ in the dual space A^* satisfy $\varphi(a^2) \geq 0$ for all a in A. Then $\|\varphi\| = \varphi(e)$.

Proof Let $||u|| \le 1$. Then $e - u \in A_+$ so that $\varphi(e - u) \ge 0$ and thus $\varphi(u) \le \varphi(e)$.

In general A_+ or $cl(A_+)$ need not be convex, see [2]. However, if (*) holds then we have,

Lemma 2 $\operatorname{cl}(A_+) = \bigcup_{t>0} t(e-U)$, where U is the r-unit ball, $U = \{u : r(u) \leq 1\}$. In particular $\operatorname{cl}(A_+)$ is convex.

Proof Suppose a is in $cl(A_+)$ and ||a|| < 1. Then a = e - (e - a) where $r(e - a) \le r((e - a) + a) = 1$. Suppose conversely that a = e - u, where $r(u) \le 1$. Then $a = \lim_{t \to 1^-} e - tu \in cl(A_+)$.

Let S_+ denote the set

$$\mathcal{S}_{+} = \{ \varphi \in A^* : \|\varphi\| = 1 \text{ and } \varphi \ge 0 \text{ on } A_{+} \},$$

a weak*-closed convex subset of A^* .

Lemma 3 Suppose $||a^2|| > 1$. Then there is φ in S_+ satisfying $\varphi(a) > 1$.

Proof Note that a^2 is not in the norm closed convex set $e - \operatorname{cl}(A_+)$ because if $a^2 = e - b$ with b in $\operatorname{cl}(A_+)$ then $r(a^2) = r(e - b) \le r((e - b) + b) = 1$.

Let φ be an element of A^* of norm 1, separating a^2 from $e - \operatorname{cl}(A_+)$,

$$\varphi(a^2) > \varphi(e-b)$$
 for all $b \in \operatorname{cl}(A_+)$.

Then, since $\operatorname{cl}(A_+)$ is closed under multiplication by positive numbers, φ must be positive on A_+ and is thus in \mathcal{S}_+ .

Lemma 4 Let φ be an element of S_+ . Then φ is multiplicative.

Proof For b in A let φ_b denote the functional $\varphi_b(c) = \varphi(bc)$. By Lemma 1, $\|\varphi_{a^2}\| = \varphi_{a^2}(e) = \varphi(a^2)$ for a in A. Thus $\varphi(a^2c) = 0 = \varphi(a^2)\varphi(c)$ for all c if $\varphi(a^2) = 0$. Suppose $\|a^2\| < 1$ and $\varphi(a^2) > 0$. Since

$$\varphi = \varphi_{a^2} + \varphi_{e-a^2}$$

and since φ_{a^2} and φ_{e-a^2} are both non-negative on A_+ , using Lemma 1, we deduce that $\varphi = \lambda \varphi_{a^2}$, where $\lambda = 1/\varphi_{(a^2)}$. Thus $\varphi(a^2c) = \varphi(a^2)\varphi(c)$ for all c in A. Since every element of A is the difference of two squares we are done.

Proof of Theorem Let X denote the weak*-closure of the set of extreme points of S_+ equipped with the weak*-topology and map A into C(X) via $a \to \hat{a}$, where $\hat{a}(\varphi) = \varphi(a)$. This map is a homomorphism by Lemma 4. Since each element of X is a homomorphism of A into the reals, $\|\hat{a}\|_{\infty,X} \leq r(a)$. Since $r(a^2) = r(a)^2$, the reverse inequality follows from Lemma 3.

- [1] Albiac, F. and Briem, E. $C(\mathcal{K})$ -representations of real Banach algebras, J. Aust. Math. Soc. 88 (2010), 289-300.
- [2] Albiac, F. and Briem, E. Real Banach algebras C(K)-algebras, to appear in Quart. J. Math. Advance Access published April 7, 2011