Approximate Identities in Convolution Algebras of some Free Quantum Groups

Michael Brannan Queen's University, Kingston

Banach Algebras 2011 Waterloo, August 9.

Consider \mathbb{F}_N , the free group on $N \geq 2$ generators, with group von Neumann algebra $VN(\mathbb{F}_N) = \lambda(\mathbb{F}_N)'' \subset \mathcal{B}(\ell^2(\mathbb{F}_N))$, and Fourier algebra

$$A(\mathbb{F}_N) = VN(\mathbb{F}_N)_* = \{g \mapsto \langle \lambda(g)\xi|\eta\rangle : \xi, \eta \in \ell^2(\mathbb{F}_N)\}.$$

 $(A(\mathbb{F}_N))$ is a CCBA, with pointwise multiplication.)

Consider \mathbb{F}_N , the free group on $N \geq 2$ generators, with group von Neumann algebra $VN(\mathbb{F}_N) = \lambda(\mathbb{F}_N)'' \subset \mathcal{B}(\ell^2(\mathbb{F}_N))$, and Fourier algebra

$$A(\mathbb{F}_N) = VN(\mathbb{F}_N)_* = \{g \mapsto \langle \lambda(g)\xi|\eta\rangle : \xi, \eta \in \ell^2(\mathbb{F}_N)\}.$$

 $(A(\mathbb{F}_N))$ is a CCBA, with pointwise multiplication.)

 \mathbb{F}_N is not amenable \iff $A(\mathbb{F}_N)$ does not have a bounded approximate identity.

Consider \mathbb{F}_N , the free group on $N \geq 2$ generators, with group von Neumann algebra $VN(\mathbb{F}_N) = \lambda(\mathbb{F}_N)'' \subset \mathcal{B}(\ell^2(\mathbb{F}_N))$, and Fourier algebra

$$A(\mathbb{F}_N) = VN(\mathbb{F}_N)_* = \{g \mapsto \langle \lambda(g)\xi|\eta\rangle : \xi, \eta \in \ell^2(\mathbb{F}_N)\}.$$

 $(A(\mathbb{F}_N))$ is a CCBA, with pointwise multiplication.)

 \mathbb{F}_N is not amenable \iff $A(\mathbb{F}_N)$ does not have a bounded approximate identity.

Question: Does $A(\mathbb{F}_N)$ have an unbounded approximate identity?

Consider \mathbb{F}_N , the free group on $N \geq 2$ generators, with group von Neumann algebra $VN(\mathbb{F}_N) = \lambda(\mathbb{F}_N)'' \subset \mathcal{B}(\ell^2(\mathbb{F}_N))$, and Fourier algebra

$$A(\mathbb{F}_N) = VN(\mathbb{F}_N)_* = \{g \mapsto \langle \lambda(g)\xi|\eta\rangle : \xi, \eta \in \ell^2(\mathbb{F}_N)\}.$$

 $(A(\mathbb{F}_N))$ is a CCBA, with pointwise multiplication.)

 \mathbb{F}_N is not amenable \iff $A(\mathbb{F}_N)$ does not have a bounded approximate identity.

Question: Does $A(\mathbb{F}_N)$ have an unbounded approximate identity?

Yes!: Let $MA(\mathbb{F}_N) = \text{multiplier algebra of } A(\mathbb{F}_N) = \{ \{ (\mathbb{F}_N) \in A(\mathbb{F}_N) \} \subset A(\mathbb{F}_N) \}$

 $= \{ \varphi \in \ell^{\infty}(\mathbb{F}_{N}) : \varphi A(\mathbb{F}_{N}) \subseteq A(\mathbb{F}_{N}) \}.$

Then $A(\mathbb{F}_N) \hookrightarrow MA(\mathbb{F}_N)$, and $\|u\|_{MA(\mathbb{F}_N)} \leq \|u\|_{A(\mathbb{F}_N)}$ $(u \in A(\mathbb{F}_N))$.

Consider \mathbb{F}_N , the free group on $N \geq 2$ generators, with group von Neumann algebra $VN(\mathbb{F}_N) = \lambda(\mathbb{F}_N)'' \subset \mathcal{B}(\ell^2(\mathbb{F}_N))$, and Fourier algebra

$$A(\mathbb{F}_N) = VN(\mathbb{F}_N)_* = \{g \mapsto \langle \lambda(g)\xi|\eta \rangle : \xi, \eta \in \ell^2(\mathbb{F}_N)\}.$$

 $(A(\mathbb{F}_N))$ is a CCBA, with pointwise multiplication.)

 \mathbb{F}_N is not amenable \iff $A(\mathbb{F}_N)$ does not have a bounded approximate identity.

Question: Does $A(\mathbb{F}_N)$ have an unbounded approximate identity?

Yes!: Let $MA(\mathbb{F}_N) = \text{multiplier algebra of } A(\mathbb{F}_N)$

 $= \{ \varphi \in \ell^{\infty}(\mathbb{F}_{N}) : \varphi A(\mathbb{F}_{N}) \subseteq A(\mathbb{F}_{N}) \}.$

Then $A(\mathbb{F}_N) \hookrightarrow MA(\mathbb{F}_N)$, and $\|u\|_{MA(\mathbb{F}_N)} \leq \|u\|_{A(\mathbb{F}_N)}$ $(u \in A(\mathbb{F}_N))$.

Theorem (Haagerup, 1979)

 $A(\mathbb{F}_N)$ has a (finitely supported) approximate identity $\{e_\alpha\}_{\alpha \in S}$ such that $\|e_\alpha\|_{MA(\mathbb{F}_N)} = 1$ ($\forall \alpha \in S$).

Better yet: \mathbb{F}_N is 1-weakly amenable [de Canniere & Haagerup, 1985]. I.e., can take e_{α} s.t. $\|e_{\alpha}\|_{M_{cb}A(\mathbb{F}_N)}=1 \ \forall \alpha \in \mathcal{S}$.

Fix $N \ge 2$. We are interested in "quantum versions" of the classical matrix groups U_N and O_N .

Fix $N \ge 2$. We are interested in "quantum versions" of the classical matrix groups U_N and O_N . Define

$$C_u(U_N^+) = C^* \langle \{u_{ij}\}_{1 \leq i,j \leq N} \mid U = [u_{ij}] \text{ and } \overline{U} = [u_{ij}^*] \text{ unitary } \rangle,$$

 $C_u(O_N^+) = C^* \langle \{u_{ij}\}_{1 \leq i,j \leq N} \mid u_{ij}^* = u_{ij}, \text{ and } U = [u_{ij}] \text{ unitary } \rangle.$

Fix $N \ge 2$. We are interested in "quantum versions" of the classical matrix groups U_N and O_N . Define

$$C_u(U_N^+) = C^* \big\langle \{u_{ij}\}_{1 \leq i,j \leq N} \ \big| \ U = [u_{ij}] \text{ and } \overline{U} = [u_{ij}^*] \text{ unitary } \big\rangle,$$

$$C_u(O_N^+) = C^* \langle \{u_{ij}\}_{1 \leq i,j \leq N} \mid u_{ij}^* = u_{ij}, \text{ and } U = [u_{ij}] \text{ unitary } \rangle.$$

 \exists surjective *-homomorphisms

$$C_u(U_N^+) \twoheadrightarrow C(U_N), C^*(\mathbb{F}_N), \qquad C_u(O_N^+) \twoheadrightarrow C(O_N), C^*((\mathbb{Z}/2\mathbb{Z})^{*N}).$$

Fix $N \ge 2$. We are interested in "quantum versions" of the classical matrix groups U_N and O_N . Define

$$C_u(U_N^+) = C^* \big\langle \{u_{ij}\}_{1 \leq i,j \leq N} \ \big| \ U = [u_{ij}] \text{ and } \overline{U} = [u_{ij}^*] \text{ unitary } \big\rangle,$$

$$C_u(O_N^+) = C^* \langle \{u_{ij}\}_{1 \leq i,j \leq N} \mid u_{ij}^* = u_{ij}, \text{ and } U = [u_{ij}] \text{ unitary } \rangle.$$

∃ surjective *-homomorphisms

$$C_u(U_N^+) \twoheadrightarrow C(U_N), C^*(\mathbb{F}_N), \qquad C_u(O_N^+) \twoheadrightarrow C(O_N), C^*((\mathbb{Z}/2\mathbb{Z})^{*N}).$$

 $C_u(U_N^+)$ and $C_u(O_N^+)$ are C*-bialgebras with coproduct

$$\Delta(u_{ij}) = \sum_{r=1}^{N} u_{ir} \otimes u_{rj}, \qquad \left(\underbrace{(\mathsf{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathsf{id}) \circ \Delta}_{\mathsf{coassociative}}\right).$$

Fix $N \ge 2$. We are interested in "quantum versions" of the classical matrix groups U_N and O_N . Define

$$C_u(U_N^+) = C^* \langle \{u_{ij}\}_{1 \leq i,j \leq N} \mid U = [u_{ij}] \text{ and } \overline{U} = [u_{ij}^*] \text{ unitary } \rangle,$$

$$C_u(O_N^+) = C^* \langle \{u_{ij}\}_{1 \leq i,j \leq N} \mid u_{ij}^* = u_{ij}, \text{ and } U = [u_{ij}] \text{ unitary } \rangle.$$

∃ surjective *-homomorphisms

$$C_u(U_N^+) \twoheadrightarrow C(U_N), C^*(\mathbb{F}_N), \qquad C_u(O_N^+) \twoheadrightarrow C(O_N), C^*((\mathbb{Z}/2\mathbb{Z})^{*N}).$$

 $C_u(U_N^+)$ and $C_u(O_N^+)$ are C*-bialgebras with coproduct

$$\Delta(u_{ij}) = \sum_{r=1}^{N} u_{ir} \otimes u_{rj}, \qquad \left(\underbrace{(\mathsf{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathsf{id}) \circ \Delta}_{\mathsf{coassociative}}\right).$$

Bialgebra structure \implies get compact quantum groups.

Definition (S. Wang, 1993)

 $U_N^+ := (C_u(U_N^+), \Delta)$ is the free UNITARY quantum group.

 $O_N^+ := (C_u(O_N^+), \Delta)$ is the free ORTHOGONAL quantum group.

For
$$\mathbb{G}=U_N^+, O_N^+, \ \exists ! \ \mathsf{Haar} \ \mathsf{state} \ h: C_u(\mathbb{G}) \to \mathbb{C}, \ \mathsf{s.t.}$$

$$(h \otimes id)\Delta = (id \otimes h)\Delta = h(\cdot)1_{C_u(\mathbb{G})}.$$

In our examples, h is actually a trace, but faithful iff $\mathbb{G} = O_2^+$.

For
$$\mathbb{G} = U_N^+, O_N^+, \exists !$$
 Haar state $h : C_u(\mathbb{G}) \to \mathbb{C}$, s.t.

$$(h \otimes id)\Delta = (id \otimes h)\Delta = h(\cdot)1_{C_u(\mathbb{G})}.$$

In our examples, h is actually a trace, but faithful iff $\mathbb{G} = O_2^+$.

GNS construction: Put $L^2(\mathbb{G}) := L^2(C_u(\mathbb{G}), h)$ and let $\lambda : C_u(\mathbb{G}) \to \mathcal{B}(L^2(\mathbb{G}))$ be the left regular (GNS) representation associated to h.

For
$$\mathbb{G}=U_N^+, O_N^+, \; \exists ! \; \mathsf{Haar} \; \mathsf{state} \; h: C_u(\mathbb{G}) \to \mathbb{C}, \; \mathsf{s.t.}$$

$$(h \otimes id)\Delta = (id \otimes h)\Delta = h(\cdot)1_{C_u(\mathbb{G})}.$$

In our examples, h is actually a trace, but faithful iff $\mathbb{G} = O_2^+$.

GNS construction: Put $L^2(\mathbb{G}) := L^2(C_u(\mathbb{G}), h)$ and let $\lambda : C_u(\mathbb{G}) \to \mathcal{B}(L^2(\mathbb{G}))$ be the left regular (GNS) representation associated to h.

Get the reduced C*-algebra of \mathbb{G} : $C_r(\mathbb{G}) = \lambda(C_u(\mathbb{G})) \subseteq \mathcal{B}(L^2(\mathbb{G}))$, and the reduced von Neumann algebra of \mathbb{G} : $L^{\infty}(\mathbb{G}) := C_r(\mathbb{G})''$.

For
$$\mathbb{G} = U_N^+, O_N^+, \; \exists ! \; \mathsf{Haar} \; \mathsf{state} \; h : C_u(\mathbb{G}) \to \mathbb{C}, \; \mathsf{s.t.}$$

$$(h \otimes id)\Delta = (id \otimes h)\Delta = h(\cdot)1_{C_u(\mathbb{G})}.$$

In our examples, h is actually a trace, but faithful iff $\mathbb{G} = O_2^+$.

GNS construction: Put $L^2(\mathbb{G}) := L^2(C_u(\mathbb{G}), h)$ and let $\lambda : C_u(\mathbb{G}) \to \mathcal{B}(L^2(\mathbb{G}))$ be the left regular (GNS) representation associated to h.

Get the reduced C*-algebra of \mathbb{G} : $C_r(\mathbb{G}) = \lambda(C_u(\mathbb{G})) \subseteq \mathcal{B}(L^2(\mathbb{G}))$, and the reduced von Neumann algebra of \mathbb{G} : $L^{\infty}(\mathbb{G}) := C_r(\mathbb{G})''$.

 Δ drops to a (normal, faithful) coproduct $\Delta_r: L^\infty(\mathbb{G}) \to L^\infty(\mathbb{G}) \overline{\otimes} L^\infty(\mathbb{G})$, making $(L^\infty(\mathbb{G}), \Delta_r, h)$ a von Neumann algebraic CQG.

Just like A(G), $L^1(\mathbb{G}) := L^{\infty}(\mathbb{G})_*$ is a CC Banach algebra with multiplication $(\Delta_r)_*$.

For $\mathbb{G}=O_N^+,\,U_N^+,\,\,C_r(\mathbb{G})$ and $L^\infty(\mathbb{G})$ have a lot in common with $C_r^*(\mathbb{F}_N)$ and $VN(\mathbb{F}_N)$:

▶ For $N \ge 3$, $L^{\infty}(\mathbb{G})$ is a non-injective, solid II_1 -factor. $C_r(\mathbb{G})$ is non-nuclear, simple, exact, projectionless. [Banica, Vaes, Vergnioux, Voigt]

- ▶ For $N \ge 3$, $L^{\infty}(\mathbb{G})$ is a non-injective, solid II_1 -factor. $C_r(\mathbb{G})$ is non-nuclear, simple, exact, projectionless. [Banica, Vaes, Vergnioux, Voigt]
- When N = 2, $O_2^+ = SU_{-1}(2)$. [Banica]

- ▶ For $N \ge 3$, $L^{\infty}(\mathbb{G})$ is a non-injective, solid II_1 -factor. $C_r(\mathbb{G})$ is non-nuclear, simple, exact, projectionless. [Banica, Vaes, Vergnioux, Voigt]
- ▶ When N = 2, $O_2^+ = SU_{-1}(2)$. [Banica]
- ▶ When N = 2, $L^{\infty}(U_2^+) \cong VN(\mathbb{F}_2)$. [Banica]

- ▶ For $N \ge 3$, $L^{\infty}(\mathbb{G})$ is a non-injective, solid II_1 -factor. $C_r(\mathbb{G})$ is non-nuclear, simple, exact, projectionless. [Banica, Vaes, Vergnioux, Voigt]
- ▶ When N = 2, $O_2^+ = SU_{-1}(2)$. [Banica]
- ▶ When N = 2, $L^{\infty}(U_2^+) \cong VN(\mathbb{F}_2)$. [Banica]
- ▶ Many other nice connections with free probability (quant. symmetries, asympt. freeness, ...). [Banica, Collins, Curran, Speicher]

- ▶ For $N \ge 3$, $L^{\infty}(\mathbb{G})$ is a non-injective, solid II_1 -factor. $C_r(\mathbb{G})$ is non-nuclear, simple, exact, projectionless. [Banica, Vaes, Vergnioux, Voigt]
- ▶ When N = 2, $O_2^+ = SU_{-1}(2)$. [Banica]
- ▶ When N = 2, $L^{\infty}(U_2^+) \cong VN(\mathbb{F}_2)$. [Banica]
- ▶ Many other nice connections with free probability (quant. symmetries, asympt. freeness, ...). [Banica, Collins, Curran, Speicher]

For $\mathbb{G}=O_N^+,\,U_N^+,\,\,C_r(\mathbb{G})$ and $L^\infty(\mathbb{G})$ have a lot in common with $C_r^*(\mathbb{F}_N)$ and $VN(\mathbb{F}_N)$:

- ▶ For $N \ge 3$, $L^{\infty}(\mathbb{G})$ is a non-injective, solid II_1 -factor. $C_r(\mathbb{G})$ is non-nuclear, simple, exact, projectionless. [Banica, Vaes, Vergnioux, Voigt]
- ▶ When N = 2, $O_2^+ = SU_{-1}(2)$. [Banica]
- ▶ When N = 2, $L^{\infty}(U_2^+) \cong VN(\mathbb{F}_2)$. [Banica]
- ► Many other nice connections with free probability (quant. symmetries, asympt. freeness, ...). [Banica, Collins, Curran, Speicher]

Questions

```
(Hard): Is L^{\infty}(O_N^+), L^{\infty}(U_N^+) \cong VN(\mathbb{F}_k) for other values of N \geq 3, k \geq 2?
```

For $\mathbb{G}=O_N^+,\,U_N^+,\,\,C_r(\mathbb{G})$ and $L^\infty(\mathbb{G})$ have a lot in common with $C_r^*(\mathbb{F}_N)$ and $VN(\mathbb{F}_N)$:

- ▶ For $N \ge 3$, $L^{\infty}(\mathbb{G})$ is a non-injective, solid II_1 -factor. $C_r(\mathbb{G})$ is non-nuclear, simple, exact, projectionless. [Banica, Vaes, Vergnioux, Voigt]
- ▶ When N = 2, $O_2^+ = SU_{-1}(2)$. [Banica]
- ▶ When N = 2, $L^{\infty}(U_2^+) \cong VN(\mathbb{F}_2)$. [Banica]
- ► Many other nice connections with free probability (quant. symmetries, asympt. freeness, ...). [Banica, Collins, Curran, Speicher]

Questions

```
(Hard): Is L^{\infty}(O_N^+), L^{\infty}(U_N^+) \cong VN(\mathbb{F}_k) for other values of N \geq 3, k \geq 2? (Easier/Related): Can we find other properties of L^{\infty}(\mathbb{G}), C_r(\mathbb{G}), L^1(\mathbb{G}) shared/not shared with VN(\mathbb{F}_k), C_r^*(\mathbb{F}_k), A(\mathbb{F}_k)?
```

Recall that for $N \geq 3$, $L^{\infty}(\mathbb{G})$ is non-injective $\iff \mathbb{G}$ is not co-amenable $\iff L^1(\mathbb{G})$ does NOT have a bounded approximate identity.

Recall that for $N \geq 3$, $L^{\infty}(\mathbb{G})$ is non-injective $\iff \mathbb{G}$ is not co-amenable $\iff L^1(\mathbb{G})$ does NOT have a bounded approximate identity.

However, by analogy with $A(\mathbb{F}_N)$, consider the (left) multiplier algebra

$$M^{\ell}(L^{1}(\mathbb{G})) = \{L \in \mathcal{B}(L^{1}(\mathbb{G})) \mid L(\omega_{1} * \omega_{2}) = (L\omega_{1}) * \omega_{2} \ \forall \omega_{1}, \omega_{2} \in L^{1}(\mathbb{G})\}.$$

Then again, $L^1(\mathbb{G}) \hookrightarrow M^{\ell}(L^1(\mathbb{G}))$ is a contraction.

Recall that for $N \geq 3$, $L^{\infty}(\mathbb{G})$ is non-injective $\iff \mathbb{G}$ is not co-amenable $\iff L^1(\mathbb{G})$ does NOT have a bounded approximate identity.

However, by analogy with $A(\mathbb{F}_N)$, consider the (left) multiplier algebra

$$M^{\ell}(L^{1}(\mathbb{G})) = \{L \in \mathcal{B}(L^{1}(\mathbb{G})) \mid L(\omega_{1} * \omega_{2}) = (L\omega_{1}) * \omega_{2} \ \forall \omega_{1}, \omega_{2} \in L^{1}(\mathbb{G})\}.$$

Then again, $L^1(\mathbb{G}) \hookrightarrow M^{\ell}(L^1(\mathbb{G}))$ is a contraction.

Theorem (B.)

 $L^1(\mathbb{G})$ has a central approximate identity $\{e_{\alpha}\} \subset ZL^1(\mathbb{G})$ s.t. $\|e_{\alpha}\|_{M^{\ell}L^1(\mathbb{G})} = \|e_{\alpha}\|_{M^{r}L^1(\mathbb{G})} = 1 \ \forall \alpha.$

Recall that for $N \geq 3$, $L^{\infty}(\mathbb{G})$ is non-injective $\iff \mathbb{G}$ is not co-amenable $\iff L^1(\mathbb{G})$ does NOT have a bounded approximate identity.

However, by analogy with $A(\mathbb{F}_N)$, consider the (left) multiplier algebra

$$M^{\ell}(L^{1}(\mathbb{G})) = \{L \in \mathcal{B}(L^{1}(\mathbb{G})) \mid L(\omega_{1} * \omega_{2}) = (L\omega_{1}) * \omega_{2} \ \forall \omega_{1}, \omega_{2} \in L^{1}(\mathbb{G})\}.$$

Then again, $L^1(\mathbb{G}) \hookrightarrow M^\ell(L^1(\mathbb{G}))$ is a contraction.

Theorem (B.)

 $L^1(\mathbb{G})$ has a central approximate identity $\{e_{\alpha}\} \subset ZL^1(\mathbb{G})$ s.t. $\|e_{\alpha}\|_{M^{\ell}L^1(\mathbb{G})} = \|e_{\alpha}\|_{M^{r}L^1(\mathbb{G})} = 1 \ \forall \alpha.$

From our proof of this result, we also answer some questions of Vaes and Vergnioux concerning the structure of $L^{\infty}(\mathbb{G})$, $C_r(\mathbb{G})$:

Theorem (B.)

 $L^{\infty}(O_N^+)$ and $L^{\infty}(U_N^+)$ have the Haagerup approximation property (HAP). $C_r(O_N^+)$ and $C_r(U_N^+)$ have the metric approximation property (MAP).

We only consider $\mathbb{G} = O_N^+$, $N \ge 3$. (The U_N^+ case follows from O_N^+ plus some free product considerations).

We only consider $\mathbb{G}=O_N^+$, $N\geq 3$. (The U_N^+ case follows from O_N^+ plus some free product considerations).

Recall Haagerup's arguments for $A(\mathbb{F}_N)$:

Let $\ell : \mathbb{F}_N \to [0, \infty) = \text{usual length function on } \mathbb{F}_N$.

We only consider $\mathbb{G}=O_N^+$, $N\geq 3$. (The U_N^+ case follows from O_N^+ plus some free product considerations).

Recall Haagerup's arguments for $A(\mathbb{F}_N)$:

Let $\ell : \mathbb{F}_N \to [0, \infty) = \text{usual length function on } \mathbb{F}_N$.

(1). For each $r \in (0,1)$, the radial function $g \mapsto \varphi_r(g) = r^{\ell(g)}$ is positive definite \iff the maps $M_{\varphi_r}\lambda(g) = \varphi_r(g)\lambda(g)$ are (normal) U.C.P. radial multipliers of $VN(\mathbb{F}_N)$, and $\lim_{r \to 1} M_{\varphi_r} = \operatorname{id}_{VN(\mathbb{F}_N)}$ point σ -weakly.

We only consider $\mathbb{G}=O_N^+$, $N\geq 3$. (The U_N^+ case follows from O_N^+ plus some free product considerations).

Recall Haagerup's arguments for $A(\mathbb{F}_N)$:

Let $\ell : \mathbb{F}_N \to [0, \infty) = \text{usual length function on } \mathbb{F}_N$.

- (1). For each $r \in (0,1)$, the radial function $g \mapsto \varphi_r(g) = r^{\ell(g)}$ is positive definite \iff the maps $M_{\varphi_r}\lambda(g) = \varphi_r(g)\lambda(g)$ are (normal) U.C.P. radial multipliers of $VN(\mathbb{F}_N)$, and $\lim_{r \to 1} M_{\varphi_r} = \operatorname{id}_{VN(\mathbb{F}_N)}$ point σ -weakly.
- (2). \mathbb{F}_N has the property of rapid decay (property RD) w.r.t. ℓ . That is, we have a Haagerup inequality:

$$\operatorname{supp}(f)\subseteq W_k=\{g:\ell(g)=k\}\Longrightarrow \|\lambda(f)\|_{VN(\mathbb{F}_k)}\leq (k+1)\|f\|_{\ell^2(\mathbb{F}_N)}.$$

We only consider $\mathbb{G}=O_N^+$, $N\geq 3$. (The U_N^+ case follows from O_N^+ plus some free product considerations).

Recall Haagerup's arguments for $A(\mathbb{F}_N)$:

Let $\ell : \mathbb{F}_N \to [0, \infty) = \text{usual length function on } \mathbb{F}_N$.

- (1). For each $r \in (0,1)$, the radial function $g \mapsto \varphi_r(g) = r^{\ell(g)}$ is positive definite \iff the maps $M_{\varphi_r}\lambda(g) = \varphi_r(g)\lambda(g)$ are (normal) U.C.P. radial multipliers of $VN(\mathbb{F}_N)$, and $\lim_{r \to 1} M_{\varphi_r} = \operatorname{id}_{VN(\mathbb{F}_N)}$ point σ -weakly.
- (2). \mathbb{F}_N has the property of rapid decay (property RD) w.r.t. ℓ . That is, we have a Haagerup inequality:

$$\operatorname{supp}(f)\subseteq W_k=\{g:\ell(g)=k\}\Longrightarrow \|\lambda(f)\|_{VN(\mathbb{F}_k)}\leq (k+1)\|f\|_{\ell^2(\mathbb{F}_N)}.$$

 \Longrightarrow Finitely supported truncations of the φ_r 's produce multipliers of $VN(\mathbb{F}_N)$ still converging to $\mathrm{id}_{VN(\mathbb{F}_N)}$, with norm-control. By duality, the truncated φ_r 's yield the desired approximate identity for $A(\mathbb{F}_N)$.

To study the structure of $L^{\infty}(O_N^+)$ and $L^1(O_N^+)$, we need to analyze the discrete dual QG \widehat{O}_N^+ . (I.e., irreducible unitary representations of O_N^+).

To study the structure of $L^{\infty}(O_N^+)$ and $L^1(O_N^+)$, we need to analyze the discrete dual QG \widehat{O}_N^+ . (I.e., irreducible unitary representations of O_N^+).

A finite dimensional unitary representation of O_N^+ is a unitary operator $V = [v_{ij}] \in M_d(C_u(O_N^+))$ such that $\Delta v_{ij} = \sum_{r=1}^d v_{ir} \otimes v_{rj} \ \forall i,j.$

To study the structure of $L^{\infty}(O_N^+)$ and $L^1(O_N^+)$, we need to analyze the discrete dual QG \widehat{O}_N^+ . (I.e., irreducible unitary representations of O_N^+).

A finite dimensional unitary representation of O_N^+ is a unitary operator $V = [v_{ij}] \in M_d(C_u(O_N^+))$ such that $\Delta v_{ij} = \sum_{r=1}^d v_{ir} \otimes v_{rj} \ \forall i,j.$

Just like classical compact groups, have notions of irreducibility, direct sum \oplus , tensor product \boxtimes , subrepresentation \subset , unitary equivalence \sim , and the conjugate representation \overline{V} for representations.

To study the structure of $L^{\infty}(O_N^+)$ and $L^1(O_N^+)$, we need to analyze the discrete dual QG \widehat{O}_N^+ . (I.e., irreducible unitary representations of O_N^+).

A finite dimensional unitary representation of O_n^+ is a unitary operator $V = [v_{ij}] \in M_d(C_u(O_N^+))$ such that $\Delta v_{ij} = \sum_{r=1}^d v_{ir} \otimes v_{rj} \ \forall i,j.$

Just like classical compact groups, have notions of irreducibility, direct sum \oplus , tensor product \boxtimes , subrepresentation \subset , unitary equivalence \sim , and the conjugate representation \overline{V} for representations.

 $\widehat{O}_{\mathit{N}}^{+} = \{ \text{equiv. classes of f.d. irreducible unitary reps. of } O_{\mathit{N}}^{+} \}.$

For O_N^+ .

To study the structure of $L^{\infty}(O_N^+)$ and $L^1(O_N^+)$, we need to analyze the discrete dual QG \widehat{O}_N^+ . (I.e., irreducible unitary representations of O_N^+).

A finite dimensional unitary representation of O_N^+ is a unitary operator $V = [v_{ij}] \in M_d(C_u(O_N^+))$ such that $\Delta v_{ij} = \sum_{r=1}^d v_{ir} \otimes v_{rj} \ \forall i,j$.

Just like classical compact groups, have notions of irreducibility, direct sum \oplus , tensor product \boxtimes , subrepresentation \subset , unitary equivalence \sim , and the conjugate representation \overline{V} for representations.

 $\widehat{O}_{\mathit{N}}^{+} = \{ \mathsf{equiv.} \ \mathsf{classes} \ \mathsf{of} \ \mathsf{f.d.} \ \mathsf{irreducible} \ \mathsf{unitary} \ \mathsf{reps.} \ \mathsf{of} \ O_{\mathit{N}}^{+} \}.$

[Banica]: Can identify $\widehat{O}_N^+ \cong \mathbb{N}_0 = \{0,1,2,\ldots\}$, and choose representatives $\{V^{(k)}\}_{k \in \mathbb{N}_0}$ for \widehat{O}_N^+ with

$$V^{(0)} = 1_{C_u(O_N^+)}, \quad V^{(1)} = U = [u_{ij}]_{1 \le i,j \le N}$$
 (fundamental rep.),

and $V^{(k)} = [v_{ij}^{(k)}] \in M_{d_k}(\mathcal{C}_u(\mathcal{O}_N^+))$ satisfies

$$\overline{V^{(k)}} \sim V^{(k)}, \quad V^{(1)} \boxtimes V^{(k)} \sim V^{(k+1)} \oplus V^{(k-1)}, \quad \text{(just like } SU(2)!\text{)}.$$

For O_N^+ .

To study the structure of $L^{\infty}(O_N^+)$ and $L^1(O_N^+)$, we need to analyze the discrete dual QG \widehat{O}_N^+ . (I.e., irreducible unitary representations of O_N^+).

A finite dimensional unitary representation of O_N^+ is a unitary operator $V = [v_{ij}] \in M_d(C_u(O_N^+))$ such that $\Delta v_{ij} = \sum_{r=1}^d v_{ir} \otimes v_{rj} \ \forall i, j$.

Just like classical compact groups, have notions of irreducibility, direct sum \oplus , tensor product \boxtimes , subrepresentation \subset , unitary equivalence \sim , and the conjugate representation \overline{V} for representations.

$$\widehat{O}_{N}^{+} = \{ \text{equiv. classes of f.d. irreducible unitary reps. of } O_{N}^{+} \}.$$

[Banica]: Can identify $\widehat{O}_N^+ \cong \mathbb{N}_0 = \{0,1,2,\ldots\}$, and choose representatives $\{V^{(k)}\}_{k\in\mathbb{N}_0}$ for \widehat{O}_N^+ with

$$V^{(0)} = 1_{C_u(O_n^+)}, \quad V^{(1)} = U = [u_{ij}]_{1 \le i,j \le N}$$
 (fundamental rep.),

and $V^{(k)} = [v_{ii}^{(k)}] \in M_{d_k}(C_u(O_N^+))$ satisfies

$$\overline{V^{(k)}} \sim V^{(k)}, \quad V^{(1)} \boxtimes V^{(k)} \sim V^{(k+1)} \oplus V^{(k-1)}, \quad \text{(just like } SU(2)!).$$

Peter-Weyl Theory: $L^2(O_N^+) = \bigoplus_{k \in \mathbb{N}_0} L^2_{(k)}(O_N^+)$, where

$$L^2_{(k)}(O_N^+) = \Lambda_h(\operatorname{span}\{v_{ii}^{(k)}: 1 \leq i, j \leq d_k\})$$
. - coeff. space of $V_i^{(k)}$

$$\ell: \widehat{O}_N^+ \cong \mathbb{N}_0 \to [0, \infty), \qquad \ell(k) = \min\{r \in \mathbb{N}_0 \mid V^{(k)} \subset U^{\boxtimes r}\} = \frac{k}{k}.$$

$$\ell: \widehat{O}_N^+ \cong \mathbb{N}_0 \to [0,\infty), \qquad \ell(k) = \min\{r \in \mathbb{N}_0 \mid V^{(k)} \subset U^{\boxtimes r}\} = k.$$

Theorem (Vergnioux)

 \widehat{O}_{N}^{+} has Property RD w.r.t. ℓ . I.e., the orthogonal projections

$$p_k: L^2(O_N^+) o L^2_{(k)}(O_N^+)$$
 satisfy $\|p_k\|_{L^2 o L^\infty} \le C_N(k+1)$.

$$\ell: \widehat{O}_N^+ \cong \mathbb{N}_0 \to [0,\infty), \qquad \ell(k) = \min\{r \in \mathbb{N}_0 \mid V^{(k)} \subset U^{\boxtimes r}\} = k.$$

Theorem (Vergnioux)

 $\widehat{\mathcal{O}}_{N}^{+}$ has Property RD w.r.t. ℓ . I.e., the orthogonal projections

$$p_k: L^2(O_N^+) o L^2_{(k)}(O_N^+)$$
 satisfy $\|p_k\|_{L^2 o L^\infty} \le C_N(k+1)$.

Thus, if we could find a net of U.C.P. multipliers $\{L_{\alpha}\}\subset M^{\ell}(L^1(O_N^+))$, with "very rapid decay" w.r.t. ℓ , and with $(L_{\alpha})^*\to \mathrm{id}$ ptwse. σ -weakly, then we could use Property RD to truncate the L_{α} 's to get a $M^{\ell}(L^1(O_N^+))$ -BAI for $L^1(O_N^+)$.

$$\ell: \widehat{O}_N^+ \cong \mathbb{N}_0 \to [0,\infty), \qquad \ell(k) = \min\{r \in \mathbb{N}_0 \mid V^{(k)} \subset U^{\boxtimes r}\} = k.$$

Theorem (Vergnioux)

 \widehat{O}_{N}^{+} has Property RD w.r.t. ℓ . I.e., the orthogonal projections

$$p_k: L^2(O_N^+) \to L^2_{(k)}(O_N^+)$$
 satisfy $\|p_k\|_{L^2 \to L^\infty} \le C_N(k+1)$.

Thus, if we could find a net of U.C.P. multipliers $\{L_{\alpha}\}\subset M^{\ell}(L^1(O_N^+))$, with "very rapid decay" w.r.t. ℓ , and with $(L_{\alpha})^*\to \mathrm{id}$ ptwse. σ -weakly, then we could use Property RD to truncate the L_{α} 's to get a $M^{\ell}(L^1(O_N^+))$ -BAI for $L^1(O_N^+)$.

Definition

A radial multiplier of $L^{\infty}(O_N^+)$ is an operator

$$T = \sum_{k \in \mathbb{N}_0} \alpha_k p_k \in \mathcal{B}(L^2(\mathcal{O}_N^+))$$

such that $T|_{L^\infty(O_N^+)}=L^*$ for some $L\in M^\ell(L^1(O_N^+))$.

Unfortunately (**[Vergnioux]**), it turns out that for $N \ge 3$, T_r is **NEVER** C.P.!

Unfortunately (**[Vergnioux]**), it turns out that for $N \ge 3$, T_r is **NEVER** C.P.!

So, we need to find a suitable net of U.C.P. radial multipliers, to replace the T_r 's.

Unfortunately (**[Vergnioux]**), it turns out that for $N \ge 3$, T_r is **NEVER** C.P.!

So, we need to find a suitable net of U.C.P. radial multipliers, to replace the \mathcal{T}_r 's.

Let
$$S_k(x) = k$$
'th Chebychev II polynomial: $S_0(x) = 1$, $S_1(x) = x$, and $xS_k(x) = S_{k-1}(x) + S_{k+1}(x)$ ($k \ge 2$).

Unfortunately (**[Vergnioux]**), it turns out that for $N \ge 3$, T_r is **NEVER** C.P.!

So, we need to find a suitable net of U.C.P. radial multipliers, to replace the \mathcal{T}_r 's.

Let $S_k(x)=k$ 'th Chebychev II polynomial: $S_0(x)=1$, $S_1(x)=x$, and $xS_k(x)=S_{k-1}(x)+S_{k+1}(x)$ $(k\geq 2)$.

Proposition (B.)

For $t \in (2, N)$,

$$T_t = \sum_{k \in \mathbb{N}_h} rac{S_k(t)}{S_k(N)} p_k \in \mathcal{B}(L^2(O_N^+))$$

is a U.C.P. radial multiplier of $L^{\infty}(O_N^+)$.

Unfortunately (**[Vergnioux]**), it turns out that for $N \ge 3$, T_r is **NEVER** C.P.!

So, we need to find a suitable net of U.C.P. radial multipliers, to replace the \mathcal{T}_r 's.

Let $S_k(x)=k$ 'th Chebychev II polynomial: $S_0(x)=1$, $S_1(x)=x$, and $xS_k(x)=S_{k-1}(x)+S_{k+1}(x)$ $(k\geq 2)$.

Proposition (B.)

For $t \in (2, N)$,

$$T_t = \sum_{k \in \mathbb{N}_h} rac{S_k(t)}{S_k(N)} p_k \in \mathcal{B}(L^2(O_N^+))$$

is a U.C.P. radial multiplier of $L^{\infty}(O_N^+)$.

Observe: Can find D > 0 s.t. $0 < \frac{S_k(t)}{S_k(N)} \le D\left(\frac{t}{N}\right)^k$ - exponential decay!, while $\lim_{t \to N} T_t|_{L^{\infty}(O_N^+)} = \mathrm{id}_{L^{\infty}(O_N^+)}$ pointwise σ -weakly. (yields HAP).

We can now proceed as above to get our MBAI for $L^1(O_N^+)$.

Unfortunately (**[Vergnioux]**), it turns out that for $N \ge 3$, T_r is **NEVER** C.P.!

So, we need to find a suitable net of U.C.P. radial multipliers, to replace the T_r 's.

Let $S_k(x)=k$ 'th Chebychev II polynomial: $S_0(x)=1$, $S_1(x)=x$, and $xS_k(x)=S_{k-1}(x)+S_{k+1}(x)$ $(k\geq 2)$.

Proposition (B.)

For $t \in (2, N)$,

$$T_t = \sum_{k \in \mathbb{N}_h} rac{S_k(t)}{S_k(N)} p_k \in \mathcal{B}(L^2(O_N^+))$$

is a U.C.P. radial multiplier of $L^{\infty}(O_N^+)$.

Observe: Can find D > 0 s.t. $0 < \frac{S_k(t)}{S_k(N)} \le D\left(\frac{t}{N}\right)^k$ - exponential decay!, while $\lim_{t \to N} T_t|_{L^{\infty}(O_N^+)} = \mathrm{id}_{L^{\infty}(O_N^+)}$ pointwise σ -weakly. (yields HAP).

We can now proceed as above to get our MBAI for $L^1(O_N^+)$.

But why is T_t a U.C.P. radial multiplier?

There is a bijection between states $\varphi \in \mathcal{S}(C[-N,N])$ and U.C.P. radial multipliers given by $\varphi \longleftrightarrow T_{\varphi} = \sum_{k \in \mathbb{N}_0} \alpha_k^{\varphi} p_k$ given by $\alpha_k^{\varphi} = \frac{\varphi(S_k)}{S_k(N)}$.

There is a bijection between states $\varphi \in \mathcal{S}(C[-N,N])$ and U.C.P. radial multipliers given by $\varphi \longleftrightarrow T_{\varphi} = \sum_{k \in \mathbb{N}_0} \alpha_k^{\varphi} p_k$ given by $\alpha_k^{\varphi} = \frac{\varphi(S_k)}{S_k(N)}$. In particular, T_t is the U.C.P. radial multiplier induced by $\varphi_t = \delta_t$.

There is a bijection between states $\varphi \in \mathcal{S}\big(C[-N,N]\big)$ and U.C.P. radial multipliers given by $\varphi \longleftrightarrow T_{\varphi} = \sum_{k \in \mathbb{N}_0} \alpha_k^{\varphi} p_k$ given by $\alpha_k^{\varphi} = \frac{\varphi(S_k)}{S_k(N)}$. In particular, T_t is the U.C.P. radial multiplier induced by $\varphi_t = \delta_t$. Proof.

 (\Leftarrow) : Let $\chi_k = (\operatorname{Tr} \otimes \operatorname{id}) V^{(k)} \in C_u(O_N^+)$ be the character of $V^{(k)}$.

There is a bijection between states $\varphi \in \mathcal{S}\left(C[-N,N]\right)$ and U.C.P. radial multipliers given by $\varphi \longleftrightarrow T_{\varphi} = \sum_{k \in \mathbb{N}_0} \alpha_k^{\varphi} p_k$ given by $\alpha_k^{\varphi} = \frac{\varphi(S_k)}{S_k(N)}$. In particular, T_t is the U.C.P. radial multiplier induced by $\varphi_t = \delta_t$.

(\Leftarrow): Let $\chi_k = (\operatorname{Tr} \otimes \operatorname{id})V^{(k)} \in C_u(O_N^+)$ be the character of $V^{(k)}$. It can be shown that

$$C[-N, N] \hookrightarrow C_u(O_N^+); \qquad S_k \mapsto \chi_k.$$

There is a bijection between states $\varphi \in \mathcal{S}\left(C[-N,N]\right)$ and U.C.P. radial multipliers given by $\varphi \longleftrightarrow T_{\varphi} = \sum_{k \in \mathbb{N}_0} \alpha_k^{\varphi} p_k$ given by $\alpha_k^{\varphi} = \frac{\varphi(S_k)}{S_k(N)}$. In particular, T_t is the U.C.P. radial multiplier induced by $\varphi_t = \delta_t$. Proof.

(\Leftarrow): Let $\chi_k = (\operatorname{Tr} \otimes \operatorname{id})V^{(k)} \in C_u(O_N^+)$ be the character of $V^{(k)}$. It can be shown that

$$C[-N, N] \hookrightarrow C_u(O_N^+); \qquad S_k \mapsto \chi_k.$$

Thus any $\varphi \in \mathcal{S}(C[-N, N])$ has a H.-B. extension to some $\psi \in \mathcal{S}(C_u(O_N^+))$.

There is a bijection between states $\varphi \in \mathcal{S}\left(C[-N,N]\right)$ and U.C.P. radial multipliers given by $\varphi \longleftrightarrow T_{\varphi} = \sum_{k \in \mathbb{N}_0} \alpha_k^{\varphi} p_k$ given by $\alpha_k^{\varphi} = \frac{\varphi(S_k)}{S_k(N)}$. In particular, T_t is the U.C.P. radial multiplier induced by $\varphi_t = \delta_t$.

(\Leftarrow): Let $\chi_k = (\operatorname{Tr} \otimes \operatorname{id})V^{(k)} \in C_u(O_N^+)$ be the character of $V^{(k)}$. It can be shown that

$$C[-N,N] \hookrightarrow C_u(O_N^+); \qquad S_k \mapsto \chi_k.$$

Thus any $\varphi \in \mathcal{S}(C[-N,N])$ has a H.-B. extension to some $\psi \in \mathcal{S}(C_u(O_N^+))$. Using ψ we can form the left multiplier

$$L_{\psi} \in M^{\ell}(L^{1}(O_{N}^{+})); \quad \omega \mapsto \psi * \omega \quad (\omega \in L^{1}(O_{N}^{+})).$$

Now, $L_{\psi}^* \in \mathcal{B}(L^{\infty}(O_N^+))$ is UCP, but we don't know what ψ (hence L_{ψ}^*) looks like!

There is a bijection between states $\varphi \in \mathcal{S}\left(C[-N,N]\right)$ and U.C.P. radial multipliers given by $\varphi \longleftrightarrow T_{\varphi} = \sum_{k \in \mathbb{N}_0} \alpha_k^{\varphi} p_k$ given by $\alpha_k^{\varphi} = \frac{\varphi(S_k)}{S_k(N)}$. In particular, T_t is the U.C.P. radial multiplier induced by $\varphi_t = \delta_t$.

(\Leftarrow): Let $\chi_k = (\operatorname{Tr} \otimes \operatorname{id})V^{(k)} \in C_u(O_N^+)$ be the character of $V^{(k)}$. It can be shown that

$$C[-N,N] \hookrightarrow C_u(O_N^+); \qquad S_k \mapsto \chi_k.$$

Thus any $\varphi \in \mathcal{S}(C[-N,N])$ has a H.-B. extension to some $\psi \in \mathcal{S}(C_u(O_N^+))$. Using ψ we can form the left multiplier

$$L_{\psi} \in M^{\ell}(L^{1}(O_{N}^{+})); \quad \omega \mapsto \psi * \omega \quad (\omega \in L^{1}(O_{N}^{+})).$$

Now, $L_{\psi}^* \in \mathcal{B}(L^{\infty}(O_N^+))$ is UCP, but we don't know what ψ (hence L_{ψ}^*) looks like!

Idea: We can "average" L_{ψ}^* using the Haar trace h, to get a U.C.P. radial multiplier. Which moreover turns out to be exactly $T_{\varphi}|_{L^{\infty}(O_{+}^{+})}!$

There is a bijection between states $\varphi \in \mathcal{S}(C[-N,N])$ and U.C.P. radial multipliers given by $\varphi \longleftrightarrow T_{\varphi} = \sum_{k \in \mathbb{N}_n} \alpha_k^{\varphi} p_k$ given by $\alpha_k^{\varphi} = \frac{\varphi(S_k)}{S_k(N)}$. In particular, T_t is the U.C.P. radial multiplier induced by $\varphi_t = \delta_t$. Proof.

 (\Leftarrow) : Let $\chi_k = (\operatorname{Tr} \otimes \operatorname{id}) V^{(k)} \in C_u(O_N^+)$ be the character of $V^{(k)}$. It can be shown that

$$C[-N,N] \hookrightarrow C_u(O_N^+); \qquad S_k \mapsto \chi_k.$$

Thus any $\varphi \in \mathcal{S}(C[-N, N])$ has a H.-B. extension to some $\psi \in \mathcal{S}(C_{\mu}(O_N^+))$. Using ψ we can form the left multiplier

$$L_{\psi} \in M^{\ell}(L^{1}(O_{N}^{+})); \quad \omega \mapsto \psi * \omega \quad (\omega \in L^{1}(O_{N}^{+})).$$

Now, $L_{\psi}^* \in \mathcal{B}(L^{\infty}(O_N^+))$ is UCP, but we don't know what ψ (hence L_{ψ}^*) looks like!

Idea: We can "average" L_{vb}^* using the Haar trace h, to get a U.C.P. radial multiplier. Which moreover turns out to be exactly $T_{\varphi}|_{L^{\infty}(O_{\nu}^{+})}!$

(\Longrightarrow): Uses M. Daws' characterisation of C.P. multipliers of QGs. \square

Work in progress.

What is the Cowling-Haagerup constant $\Lambda_{cb} \in [1, \infty]$ for $L^{\infty}(O_N^+)$? (Is \widehat{O}_N^+ weakly amenable with constant Λ_{cb} ?)

More on averaging.

Since the Haar state h is a faithful normal trace on $L^{\infty}(O_N^+)$, and

$$\Delta_r: L^{\infty}(O_N^+) \to L^{\infty}(O_N^+) \overline{\otimes} L^{\infty}(O_N^+)$$

is an injective normal *-homomorphism, $\exists !$ faithful normal $h \otimes h$ -preserving conditional expectation

$$E: L^{\infty}(O_N^+) \overline{\otimes} L^{\infty}(O_N^+) \to \Delta_r(L^{\infty}(O_N^+)).$$

We now average L_{ψ}^{*} with respect to E:

$$L_{\psi}^* \mapsto \Delta_r^{-1} \circ E \circ (\kappa \circ L_{\psi}^* \circ \kappa \otimes id) \circ \Delta_r \in \mathcal{CP}_{\sigma}(L^{\infty}(O_N^+)),$$

where $\kappa \in \mathcal{B}(L^{\infty}(O_N^+))$ is the antipode. (A bdd. *-automorphism).

One can write down concrete formulae for E, κ, L_{φ}^* etc. and check that the RHS actually equals $T_{\varphi}!!!$