The Integral Test Part 1: Introduction

Created by

Barbara Forrest and Brian Forrest

p-Series Revisited

Recall: We know that $\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$ converges while $\sum\limits_{n=1}^{\infty} \frac{1}{n}$ diverges.

We also know that if 1 , then

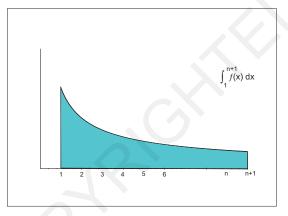
$$\frac{1}{n^2} \le \frac{1}{n^p} \le \frac{1}{n}$$

so the Comparison Test (and Limit Comparison Test) fail to determine if

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

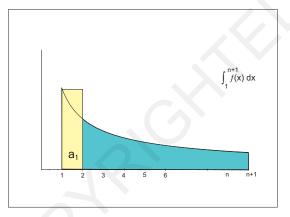
converges.

Key Idea: There is a close relationship between series and improper integrals.



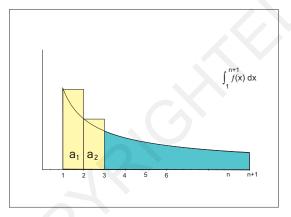
Assume that f is continuous, decreasing and f(x) > 0 on $[1, \infty)$. For each $k \in \mathbb{N}$, let $a_k = f(k)$ and $S_n = \sum_{k=1}^n a_k$

$$\int_{1}^{n+1} f(x) dx \le S_n \le a_1 + \int_{1}^{n} f(x) dx.$$



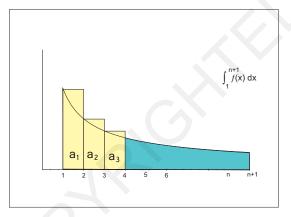
Assume that f is continuous, decreasing and f(x) > 0 on $[1, \infty)$. For each $k \in \mathbb{N}$, let $a_k = f(k)$ and $S_n = \sum_{k=1}^n a_k$

$$\int_{1}^{n+1} f(x) dx \le S_n \le a_1 + \int_{1}^{n} f(x) dx.$$



Assume that f is continuous, decreasing and f(x) > 0 on $[1, \infty)$. For each $k \in \mathbb{N}$, let $a_k = f(k)$ and $S_n = \sum_{k=1}^n a_k$

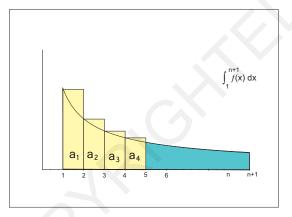
$$\int_{1}^{n+1} f(x) dx \le S_n \le a_1 + \int_{1}^{n} f(x) dx.$$



Assume that f is continuous, decreasing and f(x)>0 on $[1,\infty).$ For each $k\in\mathbb{N}$, let

let
$$a_k=f(k) \ \ \text{and} \ \ S_n=\sum_{k=1}^n a_k$$

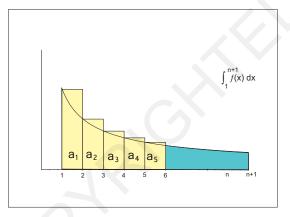
$$\int_1^{n+1} f(x)\,dx \leq S_n \leq a_1+\int_1^n f(x)\,dx.$$



Assume that f is continuous, decreasing and f(x)>0 on $[1,\infty).$ For each $k\in\mathbb{N}$, let

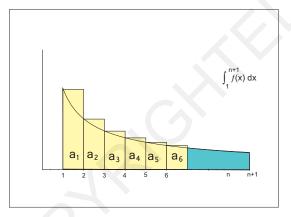
let
$$a_k=f(k) \ \ \text{and} \ \ S_n=\sum_{k=1}^n a_k$$

$$\int_1^{n+1} f(x)\,dx \leq S_n \leq a_1+\int_1^n f(x)\,dx.$$



Assume that f is continuous, decreasing and f(x) > 0 on $[1, \infty)$. For each $k \in \mathbb{N}$, let $a_k = f(k)$ and $S_n = \sum_{k=1}^n a_k$

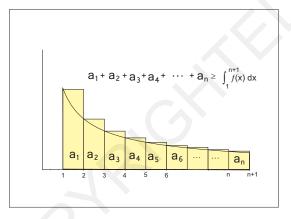
$$\int_{1}^{n+1} f(x) dx \le S_n \le a_1 + \int_{1}^{n} f(x) dx.$$



Assume that f is continuous, decreasing and f(x)>0 on $[1,\infty).$ For each $k\in\mathbb{N}$, let

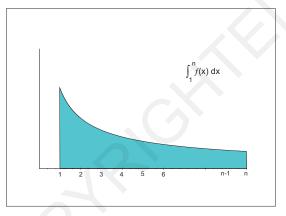
$$a_k=f(k) \ \ \text{and} \ \ S_n=\sum_{k=1}^n a_k$$

$$\int_1^{n+1} f(x)\,dx \leq S_n \leq a_1+\int_1^n f(x)\,dx.$$



Assume that f is continuous, decreasing and f(x) > 0 on $[1, \infty)$. For each $k \in \mathbb{N}$, let $a_k = f(k)$ and $S_n = \sum_{k=1}^n a_k$

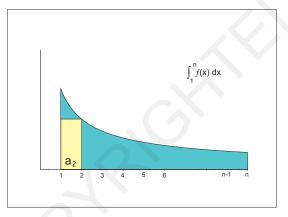
$$\int_{1}^{n+1} f(x) \, dx \le S_n \le a_1 + \int_{1}^{n} f(x) \, dx.$$



Assume that f is continuous, decreasing and f(x)>0 on $[1,\infty).$ For each $k\in\mathbb{N}$, let

let
$$a_k=f(k) \ \ \text{and} \ \ S_n=\sum_{k=1}^n a_k$$

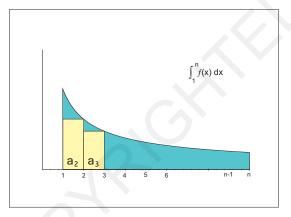
$$\int_1^{n+1} f(x)\,dx \leq S_n \leq a_1+\int_1^n f(x)\,dx.$$



Assume that f is continuous, decreasing and f(x)>0 on $[1,\infty).$ For each $k\in\mathbb{N}$, let

let
$$a_k=f(k) \ \ \text{and} \ \ S_n=\sum_{k=1}^n a_k$$

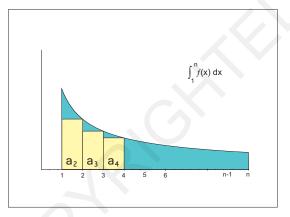
$$\int_1^{n+1} f(x)\,dx \leq S_n \leq a_1+\int_1^n f(x)\,dx.$$



Assume that f is continuous, decreasing and f(x)>0 on $[1,\infty).$ For each $k\in\mathbb{N}$, let

let
$$a_k=f(k) \ \ \text{and} \ \ S_n=\sum_{k=1}^n a_k$$

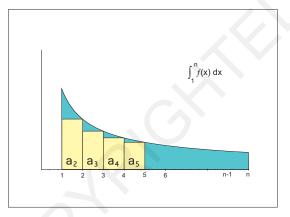
$$\int_1^{n+1} f(x)\,dx \leq S_n \leq a_1+\int_1^n f(x)\,dx.$$



Assume that f is continuous, decreasing and f(x)>0 on $[1,\infty).$ For each $k\in\mathbb{N}$, let

let
$$a_k=f(k) \ \ \text{and} \ \ S_n=\sum_{k=1}^n a_k$$

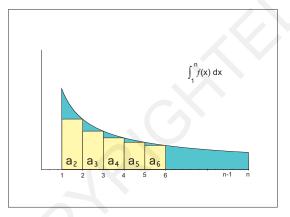
$$\int_1^{n+1} f(x)\,dx \leq S_n \leq a_1+\int_1^n f(x)\,dx.$$



Assume that f is continuous, decreasing and f(x)>0 on $[1,\infty).$ For each $k\in\mathbb{N}$, let

let
$$a_k=f(k) \ \ \text{and} \ \ S_n=\sum_{k=1}^n a_k$$

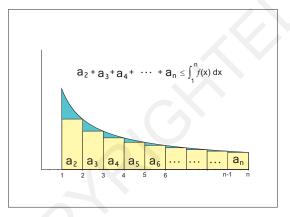
$$\int_1^{n+1} f(x)\,dx \leq S_n \leq a_1+\int_1^n f(x)\,dx.$$



Assume that f is continuous, decreasing and f(x)>0 on $[1,\infty).$ For each $k\in\mathbb{N}$, let

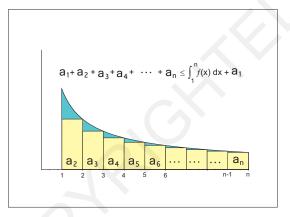
let
$$a_k=f(k) \ \ \text{and} \ \ S_n=\sum_{k=1}^n a_k$$

$$\int_1^{n+1} f(x)\,dx \leq S_n \leq a_1+\int_1^n f(x)\,dx.$$



Assume that f is continuous, decreasing and f(x) > 0 on $[1, \infty)$. For each $k \in \mathbb{N}$, let $a_k = f(k)$ and $S_n = \sum_{k=1}^n a_k$

$$\int_{1}^{n+1} f(x) \, dx \le S_n \le a_1 + \int_{1}^{n} f(x) \, dx.$$



Assume that f is continuous, decreasing and f(x) > 0 on $[1, \infty)$. For each $k \in \mathbb{N}$, let $a_k = f(k)$ and $S_n = \sum_{k=1}^n a_k$

$$\int_{1}^{n+1} f(x) \, dx \le S_n \le a_1 + \int_{1}^{n} f(x) \, dx.$$

Theorem: [The Integral Test]

Assume that
$$f$$
 is continuous on $[1, \infty)$,

$$f(x)>0$$
 on $[1,\infty)$,

$$f$$
 is decreasing on $[1, \infty)$, and $a_k = f(k)$.

Then

1) If
$$S_n = \sum\limits_{k=1}^n a_k$$
, then for all $n \in \mathbb{N}$,

$$\int_{1}^{n+1} f(x) dx \le S_n \le a_1 + \int_{1}^{n} f(x) dx.$$

- 2) $\sum_{k=0}^{\infty} a_k$ converges if and only if $\int_1^{\infty} f(x) \, dx$ converges.
- 3) If $\sum\limits_{k=1}^{\infty}a_k$ converges, with $S=\sum\limits_{k=1}^{\infty}a_k$, then

$$\int_{1}^{\infty} f(x) dx \le \sum_{k=1}^{\infty} a_k \le a_1 + \int_{1}^{\infty} f(x) dx$$

and $\int_{n+1}^{\infty} f(x) dx \leq S - S_n \leq \int_{n}^{\infty} f(x) dx.$

Note:

1) We have already established that

$$\int_{1}^{n+1} f(x) \, dx \le S_n \le a_1 + \int_{1}^{n} f(x) \, dx.$$

2) If $\sum_{k=0}^{\infty} a_k$ converges, then

$$\int_{1}^{n+1} f(x) dx \le \sum_{k=1}^{\infty} a_k$$

for all $n\in\mathbb{N}$, so

$$\int_{1}^{\infty} f(x) \, dx$$

converges by the Monotone Convergence Theorem for Functions.

If $\int_{1}^{\infty} f(x) dx$ converges, then

$$\sum_{k=1}^{n} a_k \le a_1 + \int_{1}^{\infty} f(x) \, dx$$

for all $n \in \mathbb{N}$, so

$$\sum_{i=1}^{\infty} a_i$$

converges by the Monotone Convergence Theorem.

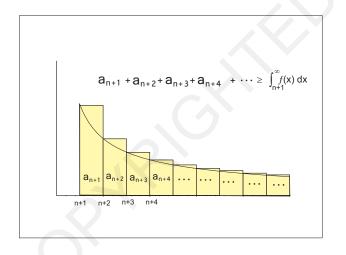
Note:

3) If $\sum\limits_{k=1}^{\infty}a_k$ converges, with $S=\sum\limits_{k=1}^{\infty}a_k$, then

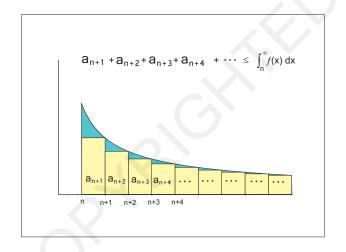
$$\lim_{n \to \infty} \int_1^{n+1} f(x) \, dx \le \lim_{n \to \infty} \sum_{k=1}^n a_k \le a_1 + \lim_{n \to \infty} \int_1^n f(x) \, dx$$

Hence

$$\int_{1}^{\infty} f(x) dx \le \sum_{k=1}^{\infty} a_k \le a_1 + \int_{1}^{\infty} f(x) dx.$$



$$\int_{n+1}^{\infty} f(x) dx \le S - S_n \le \int_{n}^{\infty} f(x) dx.$$



Finally

$$\int_{n+1}^{\infty} f(x) dx \le S - S_n \le \int_{n}^{\infty} f(x) dx.$$

p-Series Test

Key Observation : The function $f(x)=\frac{1}{x^p}$ satisfies the conditions of the Integral Test for p>0 and

$$\int_{1}^{\infty} \frac{1}{x^{p}} \, dx$$

converges if and only if p > 1.

Theorem: [p-Series Test]

The series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges if and only if p > 1.

Example: Determine whether the series

$$\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$$

converges.

Observation: Let $f(x) = \frac{1}{x \ln(x)}$ and let $a_n = f(n) = \frac{1}{n \ln(n)}$. Then f is continuous, positive, and decreasing on $[2, \infty)$.

Hence

$$\sum_{n=2}^{\infty} a_n$$

converges if and only if

$$\int_{2}^{\infty} f(x) \, dx$$

converges.

Example (continued): We compute

$$\int_2^\infty \frac{1}{x \ln(x)} dx = \lim_{b \to \infty} \int_2^b \frac{1}{x \ln(x)} dx.$$

Make a change of variable $u = \ln(x)$, and so $du = \frac{1}{x} dx$ and

$$\lim_{b \to \infty} \int_2^b \frac{1}{x \ln(x)} dx = \lim_{b \to \infty} \int_{\ln(2)}^{\ln(b)} \frac{1}{u} du$$
$$= \lim_{b \to \infty} \ln(u)|_{\ln(2)}^{\ln(b)}$$
$$= \lim_{b \to \infty} \ln(\ln(b)) - \ln(\ln(2))$$

which diverges to ∞ . Therefore

$$\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$$

diverges by the Integral Test.

Example:

Show that $\sum\limits_{n=2}^{\infty} \frac{1}{n(\ln(n))^2}$ converges.

Observation: Since $f(x) = \frac{1}{x(\ln(x))^2}$ is continuous and decreasing with f(x) > 0 on $[2, \infty)$, the Integral Test can be used to conclude that

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^2}$$

converges if and only if

$$\int_2^\infty \frac{1}{x(\ln(x))^2} \, dx$$

converges.

Example (continued): To evaluate $\int_2^b \frac{1}{x(\ln(x))^2} dx$, use the substitution $u = \ln(x)$, $du = \frac{dx}{x}$ to get

$$\int_{2}^{\infty} \frac{1}{x(\ln(x))^{2}} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x(\ln(x))^{2}} dx$$

$$= \lim_{b \to \infty} \int_{\ln(2)}^{\ln(b)} \frac{1}{u^{2}} du$$

$$= \lim_{b \to \infty} -\frac{1}{u} \Big|_{\ln(2)}^{\ln(b)}$$

$$= \lim_{b \to \infty} \frac{1}{\ln(2)} - \frac{1}{\ln(b)}.$$

$$= \frac{1}{\ln(2)}$$

Since $\int_2^\infty \frac{1}{x(\ln(x))^2} \, dx$ converges, so does $\sum_{n=2}^\infty \frac{1}{n(\ln(n))^2}$.