Absolute vs Conditional Convergence

Created by

Barbara Forrest and Brian Forrest

Absolute Convergence

Important Observation:

1) The Harmonic Series $\sum\limits_{n=1}^{\infty} \frac{1}{n}$ diverges, while the Alternating Series $\sum\limits_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ converges even though the terms have the same order of magnitude,

$$\mid \frac{1}{n} \mid = \frac{1}{n} = \mid (-1)^{n-1} \frac{1}{n} \mid$$

2) On the other hand, both $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ and $\sum\limits_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n^2}$ converge because $\frac{1}{n^2}$ is *small enough*!

Question 1: Is there a way to detect if a series will converge because its terms are *small enough*?

Absolute Convergence

Question 2: Aside from the AST all of our tests apply to positive series. Is there any additional method for determining if an arbitrary series

$$\sum_{n=1}^{\infty} a_n$$
 converges?

Definition: [Absolute Convergence]

We say that a series $\sum_{n=1}^{\infty} a_n$ converges absolutely or is absolutely convergent if the series

$$\sum_{n=1}^{\infty} \mid a_n \mid$$

converges.

Question 3: If $\sum\limits_{n=1}^{\infty}a_n$ converges absolutely, does it converge?

Absolute Convergence

Theorem: [Absolute Convergence Theorem]

Assume that the series $\sum\limits_{n=1}^{\infty}a_n$ converges absolutely. Then $\sum\limits_{n=1}^{\infty}a_n$ converges.

Proof: Assume that

$$\sum_{n=1}^{\infty}\mid a_{n}\mid$$

converges. Then so does $\sum\limits_{n=1}^{\infty}\mathbf{2}\mid a_{n}\mid$. Let

$$b_n = a_n + |a_n| \Rightarrow 0 \le b_n \le 2 |a_n|.$$

By the Comparison Test $\sum_{n=1}^{\infty} b_n$ converges.

Since $a_n = b_n - |a_n|$, it follows that $\sum_{n=1}^{\infty} a_n$ also converges and

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n + \mid a_n \mid) - \sum_{n=1}^{\infty} \mid a_n \mid$$

Example:

Example 1: Let
$$\{a_n\}=\{1,\frac{1}{2^2},\frac{-1}{3^2},\frac{1}{4^2},\frac{1}{5^2},\frac{-1}{6^2},\cdots\}$$
 . Then

$$\mid a_n \mid = rac{1}{n^2}$$

so $\sum\limits_{n=1}^{\infty} \mid a_n \mid$ converges and the series $\sum\limits_{n=1}^{\infty} a_n$ converges absolutely.

Example:

Example 2: Let $\{b_n\} = \{(-1)^{n+1} \sin(\frac{1}{\sqrt{n}})\}.$

Since

- 1) $\sin(\frac{1}{\sqrt{n}}) > 0$ for all $n \in \mathbb{N}$,
- 2) $\sin(\frac{1}{\sqrt{n+1}}) < \sin(\frac{1}{\sqrt{n}})$ for all $n \in \mathbb{N}$,
- 3) $\lim_{n \to \infty} \sin(\frac{1}{\sqrt{n}}) = 0,$

the series $\sum_{n=1}^{\infty} (-1)^{n+1} \sin(\frac{1}{\sqrt{n}})$ converges by the AST.

However, since the FTL shows that

$$\lim_{n \to \infty} \frac{\sin(\frac{1}{\sqrt{n}})}{\frac{1}{\sqrt{n}}} = 1,$$

and $\sum\limits_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges, $\sum\limits_{n=1}^{\infty} |(-1)^{n+1} \sin(\frac{1}{\sqrt{n}})| = \sum\limits_{n=1}^{\infty} \sin(\frac{1}{\sqrt{n}})$ diverges.

Hence $\sum_{n=1}^{\infty} (-1)^{n+1} \sin(\frac{1}{\sqrt{n}})$ is not absolutely convergent.

Conditional Converge:

Definition: [Conditional Convergence]

A series $\sum\limits_{n=1}^{\infty}a_n$ is said to be *conditionally convergent* if it converges, but it is not absolutely convergent.

Question 4: Why do we care if a series converges absolutely rather than conditionally?

Rearrangement of Series:

Question 5: For a finite sum *order does not matter*. That is

$$a+b+c+d=d+c+b+a$$

Is this true for infinite sums?

Definition: [Rearrangement of a Series] Given a sequence $\{a_n\}$ and a 1-1 and onto function $\phi:\mathbb{N}\to\mathbb{N}$, if we let

$$b_n = a_{\phi(n)},$$

then the series $\sum\limits_{n=1}^\infty b_n=\sum\limits_{n=1}^\infty a_{\phi(n)}$ is called a *rearrangement* of the series $\sum\limits_{n=1}^\infty a_n$.

Rearrangement of Series:

Question 6: What do we know about the convergence of $\sum\limits_{n=1}^{\infty}a_{\phi(n)}$

relative to that of $\sum\limits_{n=1}^{\infty}a_n.$ In particular, if $\sum\limits_{n=1}^{\infty}a_n$ converges, does

 $\sum\limits_{n=1}^{\infty}a_{\phi(n)}$ also converge with

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\phi(n)}?$$

Rearrangement of Series:

Facts:

- 1) If $\sum\limits_{n=1}^\infty a_n$ converges absolutely, then $\sum\limits_{n=1}^\infty a_n = \sum\limits_{n=1}^\infty a_{\phi(n)}$ for every rearrangement $\sum\limits_{n=1}^\infty a_{\phi(n)}$ of $\sum\limits_{n=1}^\infty a_n$.
- 2) If $\sum\limits_{n=1}^{\infty}a_n$ converges conditionally, then $\sum\limits_{n=1}^{\infty}a_{\phi(n)}$ may or may not converge.
- 3) If $\sum_{n=1}^{\infty} a_n$ converges conditionally and if $\alpha \in \mathbb{R} \cup \{-\infty, \infty\}$, then there exists a 1-1 and onto function $\phi: \mathbb{N} \to \mathbb{N}$ such that

$$\sum_{n=1}^{\infty} a_{\phi(n)} = \alpha.$$

Summary: Absolutely convergent series are stable, conditionally convergent series are not!