Volumes of Revolution: Shell Method

Created by

Barbara Forrest and Brian Forrest
Volumes by the Shell Method

Problem: Assume that \(f \) and \(g \) are continuous on \([a, b]\), with \(a \geq 0 \) and \(f(x) \leq g(x) \) on \([a, b]\).

Let \(W \) be the region bounded by the graphs of \(f \) and \(g \) and the lines \(x = a \) and \(x = b \).

Find the volume \(V \) of the solid obtained by rotating the region \(W \) around the \(y \)-axis.
Volumes by the Shell Method

Construct a regular n-partition of \([a, b]\) with

\[a = x_0 < x_1 < \cdots < x_{i-1} < x_i < \cdots < x_n = b.\]

This partition subdivides the region \(W\) into \(n\) subregions.

Let \(W_i\) denote the subregion of \(W\) on the interval \([x_{i-1}, x_i]\)

Let \(V_i\) be the volume obtained by rotating \(W_i\) around the \(y\)-axis so that

\[V = \sum_{i=1}^{n} V_i.\]
Volumes by the Shell Method

Approximate W_i by the rectangle R_i with height $g(x_i) - f(x_i)$, and base on the line $y = f(x_i)$ and top on the line $y = g(x_i)$ in the interval $[x_{i-1}, x_i]$.
Volumes by the Shell Method

If Δx_i is small, then V_i is approximately equal to the volume obtained by rotating R_i around the y-axis.

Rotating R_i generates a thin cylindrical shell S_i.

For this reason, this method for finding volumes is called the Shell Method (or Cylindrical Shell Method).
Volumes by the Shell Method

The volume V_i^* of the shell generated by R_i is

$$(\text{circumference}) \times (\text{height}) \times (\text{thickness})$$

which is the same as

$$2\pi \times (\text{radius}) \times (\text{height}) \times (\text{thickness}).$$

The height of the shell is $g(x_i) - f(x_i)$, its thickness is Δx_i, and the radius of revolution is x_i (the distance from the y-axis). Therefore, the volume V_i^* of S_i is

$$2\pi x_i (g(x_i) - f(x_i)) \Delta x_i.$$
Volumes by the Shell Method

\[
\text{thickess} = \Delta x_i \\
\text{radius} = x_i \\
\text{circumference} = 2\pi x_i \\
\text{height} = g(x_i) - f(x_i)
\]

\[
\text{Volume} = 2\pi x_i (g(x_i) - f(x_i)) \Delta x_i
\]
Volumes by the Shell Method

\[V = \sum_{i=1}^{n} V_i \]

\[\approx \sum_{i=1}^{n} V_i^* \]

\[= \sum_{i=1}^{n} 2\pi x_i (g(x_i) - f(x_i)) \Delta x_i \]

Let \(n \to \infty \) to get

\[V = \int_{a}^{b} 2\pi x(g(x) - f(x)) \, dx. \]
Volumes of Revolution: The Shell Method

Let \(a \geq 0 \). Let \(f \) and \(g \) be continuous on \([a, b] \) with \(f(x) \leq g(x) \) for all \(x \in [a, b] \).

Let \(W \) be the region bounded by the graphs of \(f \) and \(g \), and the lines \(x = a \) and \(x = b \).

Then the volume \(V \) of the solid of revolution obtained by rotating the region \(W \) around the \(y \)-axis is given by

\[
V = \int_a^b 2\pi x(g(x) - f(x)) \, dx.
\]
Volumes by the Shell Method

Example:

Find the volume of the solid obtained by revolving the closed region in the first quadrant bounded by the graphs of \(g(x) = x \) and \(f(x) = x^2 \) around the \(y \)-axis.

You should verify that the graphs intersect in the first quadrant when \(x = 0 \) and \(x = 1 \) on the interval \([0, 1]\) with \(f(x) \leq g(x) \).
Volumes by the Shell Method

Example (continued):

\[y \]

Graphical representation of functions:

\[f(x) = x^2 \]
\[g(x) = x \]

Graph showing the region of integration.

\[V = \int_{0}^{1} 2\pi x (g(x) - f(x)) \, dx \]

\[= \int_{0}^{1} 2\pi x (x - x^2) \, dx \]

\[= \int_{0}^{1} 2\pi (x^2 - x^3) \, dx = \frac{\pi}{6} \]