Areas Between Curves: Examples

Created by

Barbara Forrest and Brian Forrest
Recall:

Area Between Curves

Let f and g be continuous on $[a, b]$. Let A be the region bounded by the graphs of f and g, the line $t = a$ and the line $t = b$. Then the area of region A is given by

$$A = \int_{a}^{b} |g(t) - f(t)| \, dt.$$
Example:

Find the area A of the closed region bounded by the graphs of the functions $g(x) = x^2$ and $f(x) = x^3$.

This area is the shaded region in the diagram.
Example (continued):

The graphs cross when \(x^3 = x^2 \) or when

\[
0 = x^3 - x^2
\]

\[
\Rightarrow 0 = x^2(x - 1)
\]

This occurs when \(x = 0 \) and \(x = 1 \).

The area is bounded by the functions \(g(x) = x^2 \) and \(f(x) = x^3 \) between the lines \(x = 0 \) and \(x = 1 \).
Example (continued):

Notice that \(x^2 \geq x^3 \) on the interval \([0, 1]\).

Then the area is

\[
A = \int_0^1 (x^2 - x^3) \, dx
\]

\[
= \left(\frac{x^3}{3} - \frac{x^4}{4} \right) \bigg|_0^1
\]

\[
= \left(\frac{1}{3} - \frac{1}{4} \right) - (0 - 0)
\]

\[
= \frac{1}{12}
\]
Example:

Find the total area A of the closed regions bounded by the graphs of the functions $f(x) = x$ and $g(x) = x^3$.

The shaded regions in the diagram represent A.
Example (continued):

Points of Intersection

The graphs intersect where $x^3 = x$.

\[
0 = x^3 - x \\
\Rightarrow 0 = x(x^2 - 1) \\
\Rightarrow 0 = x(x + 1)(x - 1)
\]

The points of intersection occur at $x = -1$, $x = 0$, and $x = 1$.
Example (continued):

We **cannot** apply the Fundamental Theorem of Calculus directly to $|x^3 - x|$ to calculate the area since f and g intersect on the interval $[-1, 1]$.
Example (continued):

Instead, we must consider the area in two parts, A_1 and A_2.

\[
f(x) = x \quad \text{and} \quad g(x) = x^3
\]
Example (continued):

Case: Area of A1

On the interval $[-1, 0]$

$x^3 \geq x$

so

$$\int_{-1}^{0} |x^3 - x| \, dx = \int_{-1}^{0} (x^3 - x) \, dx$$

This integral represents A_1, the shaded area in the diagram.
Example (continued):

Case: Area of A_2

On the interval $[0, 1]$

$$x \geq x^3$$

so

$$\int_{0}^{1} |x^3 - x| \, dx = \int_{0}^{1} (x - x^3) \, dx$$

This integral represents A_2, the shaded area in the diagram.
Example (continued):

Total Area Between the Curves

The total area A between the curves $f(x) = x$ and $g(x) = x^3$ on the interval $[-1, 1]$ is

$$A = A_1 + A_2.$$
Example (continued):

Total Area Between the Curves

\[
A = \int_{-1}^{1} |x^3 - x| \, dx
\]

\[
= A_1 + A_2
\]

\[
= \int_{-1}^{0} |x^3 - x| \, dx + \int_{0}^{1} |x^3 - x| \, dx
\]

\[
= \int_{-1}^{0} (x^3 - x) \, dx + \int_{0}^{1} (x - x^3) \, dx
\]

\[
= \left(\frac{x^4}{4} - \frac{x^2}{2} \right) \bigg|_{-1}^{0} + \left(\frac{x^2}{2} - \frac{x^4}{4} \right) \bigg|_{0}^{1}
\]

\[
= \left((0 - 0) - \left(\frac{1}{4} - \frac{1}{2} \right) \right) + \left(\left(\frac{1}{2} - \frac{1}{4} \right) - (0 - 0) \right)
\]

\[
= \frac{1}{4} + \frac{1}{4}
\]

\[
= \frac{1}{2}
\]