Integration by Parts

Created by

Barbara Forrest and Brian Forrest

The Integration by Parts Formula

Recall: The Product Rule for derivatives states that

$$\frac{d}{dx}(f \cdot g)(x) = \left(\frac{df}{dx}\right)(x) \cdot g(x) + f(x) \cdot \left(\frac{dg}{dx}\right)(x)$$
$$= f'(x)g(x) + f(x)g'(x)$$

Key Observation: To *undo* the Product Rule we get that if f and g are differentiable.

$$f(x)g(x) = \int \frac{d}{dx} \left(f(x)g(x) \right) dx = \int f'(x)g(x) dx + \int f(x)g'(x) dx$$

Definition: [Integration by Parts Formula]

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

or

$$\int f'(x)g(x)\,dx = f(x)g(x) - \int f(x)g'(x)\,dx$$

The Strategy

Example: Evaluate $\int xe^x dx$.

Strategy:

- ▶ The goal is to rid the integrand of the x.
- ▶ The method to remove the *x* is to differentiate it "downwards" to produce the constant 1.
- ightharpoonup As a compensation, we must integrate the other factor e^x "upwards".
- Integrating e^x is not difficult.

The Strategy

Example: Evaluate $\int xe^x dx$.

Solution: Let

$$f(x) = x$$
 and $g'(x) = e^x$

Then

$$f'(x) = 1$$
 and $g(x) = e^x$

Integrating by parts, we have

$$\int xe^x dx = \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$
$$= xe^x - \int 1 \cdot e^x dx$$
$$= xe^x - e^x + C$$

More Examples

Example: Evaluate $\int x^2 \sin(x) dx$.

Strategy: We would like to eliminate the x^2 term. We can do this by differentiating twice \Rightarrow using Integration by Parts twice!

Step 1: Let $f(x)=x^2,$ $g'(x)=\sin(x)$. Then f'(x)=2x and $g(x)=-\cos(x)$.

$$\int x^2 \sin(x) dx = -x^2 \cos(x) - \int 2x(-\cos(x)) dx$$
$$= -x^2 \cos(x) + 2 \int x \cos(x) dx$$

More Examples

Example (continued): Evaluate $\int x^2 \sin(x) dx$.

Step 2: Evaluate $\int x \cos(x) dx$.

Let f(x) = x, $g'(x) = \cos(x)$. Then f'(x) = 1 and $g(x) = \sin(x)$.

$$\int x \cos(x) dx = x \sin(x) - \int \sin(x) dx$$
$$= x \sin(x) + \cos(x) + C$$

Therefore

$$\int x^{2} \sin(x) dx = -x^{2} \cos(x) + 2 \int x \cos(x) dx$$
$$= -x^{2} \cos(x) + 2x \sin(x) + 2 \cos(x) + C$$