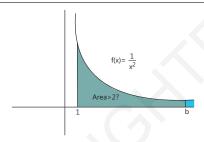
Introduction to Improper Integrals

Created by

Barbara Forrest and Brian Forrest



Question: What is the area A of the unbounded region between y=0, x=1 and the graph of $f(x)=\frac{1}{x^2}$? Is it infinite? Is it greater than 2?

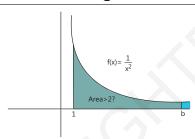
Recall: We know that

$$\int_1^b \frac{1}{x^2} dx$$

represents the area bounded by the lines y=0, x=1, x=b and the graph of $f(x)=\frac{1}{x^2}.$

Question: Can we find a b > 1 so that

$$\int_{1}^{b} \frac{1}{x^{2}} dx > 2 ?$$



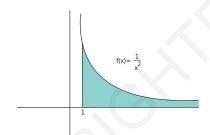
$$\int_{1}^{b} \frac{1}{x^{2}} dx = \int_{1}^{b} x^{-2} dx$$

$$= \left. -\frac{1}{x} \right|_{1}^{b}$$

$$= \left. -\frac{1}{b} + 1 \right.$$

$$= 1 - \frac{1}{b}$$

$$< 2$$



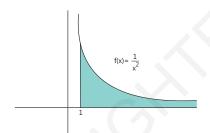
Strategy: Proceed as we did with infinite sums.

Let

$$A_b = \int_1^b \frac{1}{x^2} \, dx$$

and let $b \to \infty$ then define

$$A = \lim_{b \to \infty} A_b$$



In particular, we would have

$$A = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2}} dx$$
$$= \lim_{b \to \infty} 1 - \frac{1}{b}$$
$$= 1$$

In this case, we would like to have

$$\int_{1}^{\infty} \frac{1}{x^2} \, dx = 1$$

Definition: [Type I Improper Integrals]

1) Let f be integrable on [a,b] for each $a \leq b$. We say that the Type I improper integral

$$\int_{a}^{\infty} f(x) \, dx$$

converges if

$$\lim_{b \to \infty} \int_a^b f(x) \, dx$$

exists.

In this case, we write

$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx$$

Otherwise, we say that $\int_{a}^{\infty} f(x) dx$ diverges.

Definition: [Type I Improper Integrals]

2) Let f be integrable on [b,a] for each $b \leq a$. We say that the Type I improper integral

$$\int_{-\infty}^{a} f(x) \, dx$$

converges if

$$\lim_{b \to -\infty} \int_{b}^{a} f(x) \, dx$$

exists.

In this case, we write

$$\int_{-\infty}^{a} f(x) dx = \lim_{b \to -\infty} \int_{b}^{a} f(x) dx$$

Otherwise, we say that $\int_{-\infty}^{a} f(x) dx$ diverges.

Definition: [Type I Improper Integrals]

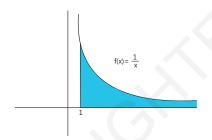
3) Assume that f is integrable on [a,b] for each $a,b\in\mathbb{R}$ with a< b . We say that the *Type I improper integral*

$$\int_{-\infty}^{\infty} f(x) \, dx$$

converges if both $\int_{-\infty}^{0} f(x) dx$ and $\int_{0}^{\infty} f(x) dx$ converge. In this case, we write

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx$$

Otherwise, we say that $\int_{-\infty}^{\infty} f(x) dx$ diverges.



Example: Show that $\int_{1}^{\infty} \frac{1}{x} dx$ diverges.

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx$$

$$= \lim_{b \to \infty} \ln(x)|_{1}^{b}$$

$$= \lim_{b \to \infty} (\ln(b) - \ln(1))$$

$$= \lim_{b \to \infty} \ln(b)$$

$$= \infty$$

p-Test for Type I Improper Integrals

Question: For which values of p does the improper integral

$$\int_1^\infty \frac{1}{x^p} \, dx$$

converge?

Key Observation : If $\alpha > 0$, then

$$\lim_{b\to\infty}b^\alpha=\infty$$

and if $\alpha < 0$, then

$$\lim_{b \to \infty} b^{\alpha} = 0$$

p-Test for Type I Improper Integrals

Note: For any b > 1,

$$\int_{1}^{b} \frac{1}{x^{p}} dx = \int_{1}^{b} x^{-p} dx$$

$$= \frac{x^{-p+1}}{-p+1} \Big|_{1}^{b}$$

$$= \frac{b^{1-p}}{1-p} - \frac{1}{-p+1}$$

$$= \frac{b^{1-p}}{1-p} + \frac{1}{p-1}$$

If p < 1, then 1 - p > 0. Therefore,

$$\lim_{b \to \infty} \frac{b^{1-p}}{1-p} + \frac{1}{p-1} = \infty$$

and hence that $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ diverges.

p-Test for Type I Improper Integrals

Note (continued): However, if p > 1, then 1 - p < 0 and

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \frac{b^{1-p}}{1-p} + \frac{1}{p-1} = \frac{1}{p-1}$$

Theorem: [p-Test for Type I Improper Integrals]

The improper integral

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

converges if and only if p > 1.

If p > 1, then

$$\int_{1}^{\infty} \frac{1}{x^p} \, dx = \frac{1}{p-1}$$

$$\int_0^\infty e^{-x} dx$$

Example: Evaluate $\int_0^\infty e^{-x} dx$.

We have

$$\int_0^\infty e^{-x} dx = \lim_{b \to \infty} \int_0^b e^{-x} dx$$

$$= \lim_{b \to \infty} -e^{-x} \Big|_0^b$$

$$= \lim_{b \to \infty} (-e^{-b} + e^0)$$

$$= \lim_{b \to \infty} (-e^{-b} + 1)$$

$$= 1$$

since $\lim_{b\to\infty} -e^{-b} = 0$.

Theorem: [Type I Improper Integrals]

Assume that $\int_{a}^{\infty} f(x) dx$ and $\int_{a}^{\infty} g(x) dx$ both converge.

1. $\int_{a}^{\infty} cf(x) dx$ converges for each $c \in \mathbb{R}$ and

$$\int_a^\infty cf(x)\,dx = c\int_a^\infty f(x)\,dx$$

2. $\int_{-\infty}^{\infty} (f(x) + g(x)) dx$ converges and

$$\int_{a}^{\infty} (f(x) + g(x)) dx = \int_{a}^{\infty} f(x) dx + \int_{a}^{\infty} g(x) dx$$

3. If $f(x) \leq g(x)$ for all $a \leq x$, then

$$\int_{a}^{\infty} f(x) \, dx \le \int_{a}^{\infty} g(x) \, dx$$

4. If $\int_a^\infty f(x)\,dx$ converges and $a< c<\infty$, then $\int_c^\infty f(x)\,dx$ converges and $\int_c^\infty f(x)\,dx = \int_c^c f(x)\,dx + \int_c^\infty f(x)\,dx$

Important Note

Important Note:

 Always evaluate improper integrals by first expressing them as limits of proper integrals. That is

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

2) Never apply techniques of integration such as change of variables or integration by parts directly to an improper integral. Apply these techniques to the proper integral

$$\int_a^b f(x) \, dx$$

and then take the limit.