Applications of the MVT: Increasing Function Theorem

Created by

Barbara Forrest and Brian Forrest
Functions

Definition: [Increasing and Decreasing Functions]

Suppose that \(f(x) \) is defined on an interval \(I \).

i) We say that \(f(x) \) is increasing on \(I \) if \(f(x_1) < f(x_2) \) for all \(x_1, x_2 \in I \) with \(x_1 < x_2 \).

ii) We say that \(f(x) \) is decreasing on \(I \) if \(f(x_1) > f(x_2) \) for all \(x_1, x_2 \in I \) with \(x_1 < x_2 \).

iii) We say that \(f(x) \) is non-decreasing on \(I \) if \(f(x_1) \leq f(x_2) \) for all \(x_1, x_2 \in I \) with \(x_1 < x_2 \).

iv) We say that \(f(x) \) is non-increasing on \(I \) if \(f(x_1) \geq f(x_2) \) for all \(x_1, x_2 \in I \) with \(x_1 < x_2 \).

Such functions are said to be monotonically increasing or decreasing on \(I \).

Question: How can we determine if a function \(f(x) \) is either increasing or decreasing on an interval \(I \)?
Increasing Function Theorem

Observation: Assume that

\[f(x) = mx + b. \]

If \(m > 0 \), the graph of the function slopes upward as we move from left to right. In other words, if \(x_1 < x_2 \), then

\[f(x_1) = mx_1 + b < mx_2 + b = f(x_2). \]

Note: \(f'(x) = m > 0 \) for all \(x \in \mathbb{R} \).
Increasing Function Theorem

$f'(x) > 0$

$f(x)$ always increasing?

Question: If $f(x)$ is such that $f'(x) > 0$ for all $x \in I$, is $f(x)$ increasing on I?
Theorem: [The Increasing/Decreasing Function Theorem]

i) Let I be an interval and assume that $f'(x) > 0$ for all $x \in I$. If $x_1 < x_2$ are two points in I, then

$$f(x_1) < f(x_2).$$

That is, $f(x)$ is increasing on I.

ii) Let I be an interval and assume that $f'(x) \geq 0$ for all $x \in I$. If $x_1 < x_2$ are two points in I, then

$$f(x_1) \leq f(x_2).$$

That is, $f(x)$ is non-decreasing on I.

iii) Let I be an interval and assume that $f'(x) < 0$ for all $x \in I$. If $x_1 < x_2$ are two points in I, then

$$f(x_1) > f(x_2).$$

That is, $f(x)$ is decreasing on I.

iv) Let I be an interval and assume that $f'(x) \leq 0$ for all $x \in I$. If $x_1 < x_2$ are two points in I, then

$$f(x_1) \geq f(x_2).$$

That is, $f(x)$ is non-increasing on I.
Increasing Function Theorem

i) Let I be an interval and assume that $f'(x) > 0$ for all $x \in I$. If $x_1 < x_2$ are two points in I, then

$$f(x_1) < f(x_2).$$
Increasing Function Theorem

Proof of i): Assume that \(f'(x) > 0 \) for all \(x \in I \). Let \(x_1, x_2 \in I \) with \(x_1 < x_2 \). By the MVT there exists \(c \in (x_1, x_2) \) with

\[
\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0.
\]

Since \(x_2 - x_1 > 0 \), we have

\[
f(x_2) - f(x_1) > 0
\]

and hence that

\[
f(x_2) > f(x_1).
\]
Increasing Function Theorem

Question: If $f(x)$ is increasing on an interval I and differentiable on I, then must $f'(x) > 0$ for all $x \in I$?

Solution: Let $f(x) = x^3$. Since $f'(x) = 3x^2$, we have

$$f'(0) = 0$$

but $f(x)$ is increasing on all of \mathbb{R}.
Question:

1) Is the function $f(x) = x^3$ increasing on $[0, 1]$? **Yes!**

2) If $f(x)$ is everywhere differentiable and if $f'(c) > 0$, does this mean that there is an open interval (a, b) containing c on which $f(x)$ is increasing? **No!**