Local Extrema

Created by

Barbara Forrest and Brian Forrest
Global Extrema

Definition: [Global Extrema]

Suppose that $f(x)$ is defined on some set S.

1) We say that $f(x)$ has a global maxima on S at $x = c$ if

$$f(x) \leq f(c)$$

for every $x \in S$.

2) We say that $f(x)$ has a global minimum on S at $x = c$ if

$$f(c) \leq f(x)$$

for every $x \in S$.
Recall: The *Extreme Value Theorem* tells us that if $f(x)$ is continuous on $[a, b]$, then there exists $c, d \in [a, b]$ such that

$$f(c) \leq f(x) \leq f(d)$$

for all $x \in [a, b]$, and each of c and d is either

1) an endpoint, or
2) is in the open interval (a, b).

Global Extrema
Local Extrema

Definition: [Local Extrema]

1) We say that \(f(x) \) has a *local maximum* at \(x = c \) if there exists an open interval \((a, b) \) containing \(c \) such that

\[
f(x) \leq f(c)
\]

for every \(x \in (a, b) \).

2) We say that \(f(x) \) has a *local minimum* at \(x = c \) if there exists an open interval \((a, b) \) containing \(c \) such that

\[
f(c) \leq f(x)
\]

for every \(x \in (a, b) \).
Local and Global Extrema

$y = g(x)$ is defined on $[a, f]$.

- **Local and Global Minimum**: $g(x)$ reaches its minimum at $x = a$ and $x = f$.
- **Local Maximum**: $g(x)$ reaches its maximum at $x = b$ and $x = f$.
- **Local Minimum**: $g(x)$ reaches its minimum at $x = c$, $x = d$, and $x = e$. The global maximum occurs at $x = f$.

Notes:
- The function $g(x)$ changes behavior at $x = b$ and $x = f$.
- The interval $[a, f]$ is where the function $g(x)$ is defined.
Local Extrema

Problem:

If f has either a local maximum or local minimum at $x = c$ and f is differentiable at $x = c$, what can we say about $f'(c)$?
Local Extrema

Solution: Assume that $f(x)$ has a local maximum at $x = c$ and that $c \in (a, b)$ with $f(x) \leq f(c)$ for all $x \in (a, b)$. Assume that $f'(c)$ exists.

1. If $a < c + h < c$, then
 \[
 \frac{f(c+h)-f(c)}{h} \geq 0 \Rightarrow f'(c) = \lim_{h \to 0^-} \frac{f(c+h)-f(c)}{h} \geq 0.
 \]

2. If $c < c + h < b$, then
 \[
 \frac{f(c+h)-f(c)}{h} \leq 0 \Rightarrow f'(c) = \lim_{h \to 0^+} \frac{f(c+h)-f(c)}{h} \leq 0.
 \]

Hence $f'(c) = 0$.
Local Extrema

Theorem: [Local Extrema Theorem]

Assume that $f(x)$ has either a local maximum or a local minimum at $x = c$. If $f(x)$ is differentiable at $x = c$, then

$$f'(c) = 0.$$

Question:

If $f'(c) = 0$ must $x = c$ be either a local maximum or local minimum?
Local Extrema

Example: Let \(f(x) = x^3 \). Then \(f'(x) = 3x^2 \) so that
\[
f'(0) = 0.
\]
But \(f(x) \) has neither a local maximum nor a local minimum at \(x = c \) since \(f(x) \) is always increasing.
Local Extrema

\[f(x) = |x| \]

Question: If \(f(x) \) has a local maximum or minimum at \(x = c \), must \(f'(c) = 0 \)?

Example: Let \(f(x) = |x| \). Then \(f(x) \) has a local (and global) minimum at \(x = 0 \), but \(f'(0) \) does not exist.
Definition: [Critical Point]

A point c in the domain of a function $f(x)$ is called a critical point for $f(x)$ if either

$$ f'(c) = 0 $$

or

$$ f'(c) \text{ does not exist.} $$
Theorem: [Extreme Value Theorem (EVT)]

Assume that $f(x)$ is continuous on $[a, b]$. Then there exists $c, d \in [a, b]$ such that

$$f(c) \leq f(x) \leq f(d)$$

for every $x \in [a, b]$.

Question: How can we find c and d?
Global Extrema and the EVT

Two Cases:

1) d is an endpoint.

2) $d \in (a, b) \Rightarrow d$ is a local max $\Rightarrow d$ is a critical point.

Similarly for c.

Global Extrema and the EVT

Two Cases:

1) d is an endpoint.
Global Extrema and the EVT

Two Cases:
1) \(d \) is an endpoint.

2) \(d \in (a, b) \Rightarrow d \) is a local max \(\Rightarrow d \) is a critical point.

Similarly for \(c \).
Finding Local Extrema

Question:
How do we know if a critical point \(x = c \) is actually a local maximum or a local minimum?
Question:

How do we know if a critical point $x = c$ is actually a local maximum or a local minimum?