Linear Approximation: Basics

Created by

Barbara Forrest and Brian Forrest

Tangent Line

Question: Does there exist a geometric interpretation of the derivative?

Definition: [Tangent Line]

The tangent line to the graph of f(x) at x=a is the line passing through (a,f(a)) with slope equal to f'(a). That is

$$y = f(a) + f'(a)(x - a).$$

Linear Approximation

Fundamental Observation:

Suppose that f(x) is differentiable at x=a with derivative $f^{\prime}(a)$. Then

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Hence for values of x that are close to a we have

$$\frac{f(x) - f(a)}{x - a} \cong f'(a). \tag{*}$$

Rearranging (*), we get

$$f(x) - f(a) \cong f'(a)(x - a)$$

and finally that

$$f(x) \cong f(a) + f'(a)(x - a). \quad (**)$$

Linear Approximation

Definition: [Linear Approximation]

Let y=f(x) be differentiable at x=a. The linear approximation to f(x) at x=a is the function

$$L_a^f(x) = f(a) + f'(a)(x - a).$$

 $L_a^f(x)$ is also called the *linearization* of f(x) or the *tangent line approximation* to f(x) at x=a.

Note: If f(x) is clear from the context, then we will simply write $L_a(x)$.

Linear Approximation

Summary: If

$$L_a^f(x) = f(a) + f'(a)(x - a)$$

then if $x \cong a$.

$$L_a^f(x) \cong f(x).$$

Observation: The graph of $L_a^f(x)$ is the tangent line to the graph of f(x) through (a, f(a)).

Fundamental Properties of $L_a^f(x)$

Three Fundamental Properties of $L_a^f(x)$:

Assume that f(x) is differentiable at x = a with

$$L_a^f(x) = f(a) + f'(a)(x - a).$$

Then:

- 1) $L_a^f(a) = f(a)$.
- 2) $L_a^f(x)$ is differentiable at x=a and $L_a^f{}^{\prime}(a)=f^{\prime}(a)$.
- 3) $L_a^f(x)$ is the **only** first degree polynomial with Property (1) and Property (2).

Fundamental Trig Limit

Recall: The Fundamental Trig Limit

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$

Observe: If $f(x) = \sin(x)$, then f(0) = 0 and $f'(0) = \cos(0) = 1$ so

$$\sin(x) \cong L_0(x) = x$$

when $x \cong 0$.

Fundamental Trig Limit

Example: Use linear approximation to estimate $\sin(.01)$.

Solution: We have

$$\sin(.01) \cong L_0(.01) = x \mid .01 = .01$$

Note: In fact

$$\sin(.01) = .00999983$$

to eight decimal places.

So the error is

Error
$$= |\sin(.01) - L_0(.01)|$$

 $\cong .00000017$
 $= 1.7 \times 10^{-7}$.

Example

Example: Let $f(x) = \tan(\sqrt{x})$ and a = 1.

Key Observation:

Over very small intervals differentiable functions appear like lines.