One-sided Limits

Created by

Barbara Forrest and Brian Forrest
Recall: Formal Definition of a Limit
We say that L is the limit of $f(x)$ as x approaches a if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if

$$0 < |x - a| < \delta,$$

then

$$|f(x) - L| < \epsilon.$$
Example: Let \(f(x) = \frac{|x|}{x} \). \(\lim_{x \to 0} f(x) \) does not exist.
Example: Let $f(x) = \frac{|x|}{x}$. ⇒ $\lim_{x \to 0} f(x)$ does not exist.

If $x > 0$ and $x \to 0$, then $f(x) \to 1$.
Example: Let $f(x) = \frac{|x|}{x}$. \Rightarrow $\lim_{x \to 0} f(x)$ does not exist.

If $x > 0$ and $x \to 0$, then $f(x) \to 1$.

If $x < 0$ and $x \to 0$, then $f(x) \to -1$.
One-sided Limits

Definition: [Limit from Above]

We say that L is the limit of $f(x)$ as x approaches a from above (or from the right), if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $a < x < a + \delta$, then

$$|f(x) - L| < \epsilon.$$

We write $\lim_{x \to a^+} f(x) = L$.
Definition: [Limit from Below]

We say that L is the limit of $f(x)$ as x approaches a from below (or from the left), if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $a - \delta < x < a$, then

$$|f(x) - L| < \epsilon.$$

We write $\lim_{x \to a^-} f(x) = L$.
Example: We know that \(\lim_{x \to 0} \frac{|x|}{x} \) does not exist. However,

\[
\lim_{x \to 0^+} \frac{|x|}{x} = 1
\]

and

\[
\lim_{x \to 0^-} \frac{|x|}{x} = -1.
\]
One-sided Limits vs. Limits

Theorem

The following are equivalent:

1. \(\lim_{x \to a} f(x) = L. \)

2. Both \(\lim_{x \to a^+} f(x) \) and \(\lim_{x \to a^-} f(x) \) exist with

\[
\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x).
\]
One-sided Limits

Assume that \(\lim_{x \to a} f(x) = L \)

\[\Rightarrow \lim_{x \to a^+} f(x) = L, \text{ and} \]
\[\lim_{x \to a^-} f(x) = L. \]
One-sided Limits

Assume that \(\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x) \).
One-sided Limits

Assume that
\[\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x) \Rightarrow \lim_{x \to a} f(x) = L. \]