Limits of Functions: Part II

Created by

Barbara Forrest and Brian Forrest
Definition: [Limit of a Function]

We say that \(L \) is the limit of \(f(x) \) as \(x \) approaches \(a \) if for every \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that if

\[
0 < |x - a| < \delta,
\]

then

\[
|f(x) - L| < \epsilon.
\]

We write

\[
\lim_{x \to a} f(x) = L.
\]
Proving the Limit Exists

Example: Show that
$$\lim_{x \to 2} 3x + 1 = 7.$$
\[
\frac{\epsilon}{\delta} = \frac{\text{Rise}}{\text{Run}} = 3 \quad \Rightarrow \quad \delta = \frac{\epsilon}{3}.
\]

Algebraically, we want
\[
| (3x + 1) - 7 | < \epsilon \quad \iff \quad | 3x - 6 | < \epsilon \\
\quad \iff \quad 3 | x - 2 | < \epsilon \\
\quad \iff \quad | x - 2 | < \frac{\epsilon}{3}
\]

So if \(\delta = \frac{\epsilon}{3} \) and \(0 < | x - 2 | < \delta \), we have \(| (3x + 1) - 7 | < \epsilon \).
Remark: If \(f(x) = mx + b \) where \(m \neq 0 \), then

\[
\lim_{x \to a} mx + b = m(a) + b.
\]

Given \(\epsilon > 0 \), if

\[
\delta = \frac{\epsilon}{|m|}
\]

and if \(0 < |x - a| < \delta \), then

\[
| f(x) - (m(a) + b) | = |(mx + b) - (ma + b)|
= |m| \cdot |x - a|
< |m| \cdot \frac{\epsilon}{|m|}
= \epsilon
\]

Example:

\[
\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} x + 1 = 2.
\]
Example: Show that
\[\lim_{x \to 3} x^2 = 9. \]

Let \(\epsilon > 0 \). We want
\[0 < |x - 3| < \delta \]
to imply
\[|x^2 - 9| = |x - 3||x + 3| < \epsilon. \]

We might choose \(\delta = \frac{\epsilon}{|x+3|} \) since if \(0 < |x - 3| < \frac{\epsilon}{|x+3|} \), then
\[|x^2 - 9| < \frac{\epsilon}{|x + 3|} \cdot |x + 3| = \epsilon. \]

Note: \(\frac{\epsilon}{|x+3|} \) is not a constant!
An Important Observation

Observation: In the definition of a limit, if we find a δ that works for a particular ϵ, then any smaller δ will also satisfy the definition of the limit of a function for the same ϵ.

Trick: In showing that $\lim_{x \to 3} x^2 = 9$, we can always assume that $\delta \leq 1$.
Example (continued)

If

$$0 < |x - 3| < \delta \leq 1,$$

then

$$2 < x < 4$$

so

$$|x + 3| < |4 + 3| = 7.$$

If $\delta < \min(1, \frac{\epsilon}{7})$, then

$$0 < |x - 3| < \delta \Rightarrow$$

$$|x^2 - 9| = |x - 3||x + 3| < \delta \cdot 7 < \frac{\epsilon}{7} \cdot 7 = \epsilon.$$