Definition: [Continuity]

We say that $f(x)$ is continuous at $x = a$ if

1) $\lim_{x \to a} f(x)$ exists.

2) $\lim_{x \to a} f(x) = f(a)$.

Otherwise, we say that $f(x)$ is discontinuous at a or that a is a point of discontinuity for $f(x)$.
Definition of Continuity

We say that $f(x)$ is continuous at $x = a$ if

1) $\lim_{x \to a} f(x)$ exists.
2) $\lim_{x \to a} f(x) = f(a)$.

Otherwise, we say that $f(x)$ is discontinuous at a or that a is a point of discontinuity for $f(x)$.

Note: 2) \Rightarrow 1).
Definition of Continuity

Observe: The following are equivalent:

1) \(\lim_{x \to a} f(x) = f(a) \).

2) For every \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that
 \[0 < |x - a| < \delta \implies |f(x) - f(a)| < \epsilon. \]

3) For every \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that
 \[|x - a| < \delta \implies |f(x) - f(a)| < \epsilon. \]

Alternate Definition: [Continuity]

We say that \(f(x) \) is continuous at \(x = a \) if for every \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that if \(|x - a| < \delta \), then

\[|f(x) - f(a)| < \epsilon. \]
Definition of Continuity

\[f(a) = \lim_{x \to a} f(x) \]

\[f(a) - \epsilon < f(x) < f(a) + \epsilon \]
Definition of Continuity

\[f(a) + \epsilon \]
\[f(a) - \epsilon \]
\[f(a) + \epsilon_1 \]
\[f(a) - \epsilon_1 \]
Sequential Characterization of Continuity

Recall: The following are equivalent:

1) \(\lim_{x \to a} f(x) = L \).

2) If \(\{x_n\} \) is a sequence with \(x_n \to a \) and \(x_n \neq a \), then \(\lim_{n \to \infty} f(x_n) = L \).

Theorem: [Sequential Characterization of Continuity]

The following are equivalent:

1) \(f(x) \) is continuous at \(x = a \).

2) If \(\{x_n\} \) is a sequence with \(x_n \to a \), then \(\lim_{n \to \infty} f(x_n) = f(a) \).