Limits of Sequences

Created by

Barbara Forrest and Brian Forrest
The Limit of a Sequence

New Heuristic Definition:
We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$ such that the terms a_n approximate L with an error less than ϵ provided that $n \geq N$.

Formal Definition: [Limit of a Sequence]

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n \geq N$, then

$$|a_n - L| < \epsilon.$$

In this case, we say that $\{a_n\}$ converges to L and we write

$$\lim_{n \to \infty} a_n = L.$$

If no such L exists we say that $\{a_n\}$ diverges.
1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
4. Choose a smaller ϵ_1.
5. **Repeat Step 3** with a larger N_1.

The Limit of a Sequence
The Limit of a Sequence

It is useful to look at how this works on the Real line.
The Limit of a Sequence

It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).
It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \),
The Limit of a Sequence

It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \).
It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This creates the interval \((L - \epsilon, L + \epsilon)\) as the “target.”
The Limit of a Sequence

It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This creates the interval \((L - \epsilon, L + \epsilon)\) as the “target.”

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon)\).
The Limit of a Sequence

It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This creates the interval \((L - \epsilon, L + \epsilon) \) as the “target.”

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
The Limit of a Sequence

It is useful to look at how this works on the Real line.

Assume $\lim_{n \to \infty} a_n = L$ and let $\epsilon > 0$.

We create an error band by moving ϵ units to the left from L to $L - \epsilon$, and then ϵ units to the right from L to $L + \epsilon$. This creates the interval $(L - \epsilon, L + \epsilon)$ as the “target.”

- Not all terms in $\{a_n\}$ must fall in $(L - \epsilon, L + \epsilon)$.
It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This creates the interval \((L - \epsilon, L + \epsilon)\) as the “target.”

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon)\).
The Limit of a Sequence

\[n \geq N \]

It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This creates the interval \((L - \epsilon, L + \epsilon)\) as the “target.”

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon)\).
- We can find \(N \in \mathbb{N} \) such that if \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \).
The Limit of a Sequence

It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This creates the interval \((L - \epsilon, L + \epsilon) \) as the “target.”

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
- We can find \(N \in \mathbb{N} \) such that if \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \).
The Limit of a Sequence

It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This creates the interval \((L - \epsilon, L + \epsilon) \) as the “target.”

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
- We can find \(N \in \mathbb{N} \) such that if \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \).
The Limit of a Sequence

It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We can find \(N \in \mathbb{N} \) such that if \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \).

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
The Limit of a Sequence

\[n \geq N \]

It is useful to look at how this works on the Real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This creates the interval \((L - \epsilon, L + \epsilon) \) as the “target.”

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
- We can find \(N \in \mathbb{N} \) such that if \(n \geq N \implies a_n \in (L - \epsilon, L + \epsilon) \).
The Limit of a Sequence

Assume that \(\lim_{n \to \infty} a_n = L \in (a, b) \).
The Limit of a Sequence

Assume that \(\lim_{n \to \infty} a_n = L \in (a, b) \). We claim that \((a, b)\) contains a tail of the sequence \(\{a_n\}\).
The Limit of a Sequence

Assume that \(\lim_{n \to \infty} a_n = L \in (a, b) \). We claim that \((a, b)\) contains a tail of the sequence \(\{a_n\}\).

Choose

\[\epsilon \leq \min\{L - a, b - L\} \]
The Limit of a Sequence

Assume that \(\lim_{n \to \infty} a_n = L \in (a, b) \). We claim that \((a, b)\) contains a tail of the sequence \(\{a_n\}\).

Choose

\[
\epsilon \leq \min\{L - a, b - L\}.
\]

Then

\[
(L - \epsilon, L + \epsilon) \subseteq (a, b).
\]
Assume that \(\lim_{n \to \infty} a_n = L \in (a, b) \). We claim that \((a, b)\) contains a tail of the sequence \(\{a_n\}\).

Choose

\[\epsilon \leq \min\{L - a, b - L\}. \]

Then

\[(L - \epsilon, L + \epsilon) \subseteq (a, b). \]

If \(n\) is large enough, then \(a_n \in (L - \epsilon, L + \epsilon)\).
The Limit of a Sequence

Assume that \(\lim_{n \to \infty} a_n = L \in (a, b) \). We claim that \((a, b)\) contains a tail of the sequence \(\{a_n\} \).

Choose

\[\epsilon \leq \min\{L - a, b - L\} \.

Then

\[(L - \epsilon, L + \epsilon) \subseteq (a, b) \.

If \(n \) is large enough, then \(a_n \in (L - \epsilon, L + \epsilon) \) and hence

\[a_n \in (a, b) \.

Theorem

The following statements are equivalent:

1. \(\lim_{n \to \infty} a_n = L \).
2. Every interval \((L - \epsilon, L + \epsilon)\) contains a tail of \(\{a_n\}\).
3. Every interval \((L - \epsilon, L + \epsilon)\) contains all but finitely many terms of \(\{a_n\}\).
4. Every interval \((a, b)\) containing \(L\) contains a tail of \(\{a_n\}\).
5. Every interval \((a, b)\) containing \(L\) contains all but finitely many terms of \(\{a_n\}\).

Important Note: Changing finitely many terms in \(\{a_n\}\) does not affect convergence.