Least Upper Bound Property

Created by

Barbara Forrest and Brian Forrest
Bounded Sets

Definition: [Upper/Lower Bounds]

Let $S \subset \mathbb{R}$.

1. α is an upper bound for S if $x \leq \alpha$ for all $x \in S$.
Definition: [Upper/Lower Bounds]

Let $S \subset \mathbb{R}$.

1. α is an upper bound for S if $x \leq \alpha$ for all $x \in S$.
2. β is a lower bound for S if $\beta \leq x$ for all $x \in S$.
Bounded Sets

Definition: [Bounded Sets]

Let \(S \subset \mathbb{R} \).

1. \(S \) is bounded above if \(S \) has an upper bound \(\alpha \).
2. \(S \) is bounded below if \(S \) has a lower bound \(\beta \).
Bounded Sets

Definition: [Bounded Sets]

Let $S \subseteq \mathbb{R}$.

1. S is **bounded above** if S has an upper bound α.
2. S is **bounded below** if S has a lower bound β.
3. S is **bounded** if S is bound above and bounded below.
The Set \([0, 1)\)

Let \(S = [0, 1)\).
The Set \([0, 1)\)

Let \(S = [0, 1)\).

- \(S\) is bounded above by 2.
Let $S = [0, 1)$.

- S is bounded above by 2.
- S is also bounded above by 4.
Let $S = [0, 1)$.

- S is bounded above by 2.
- S is also bounded above by 4.
- S has infinitely many upper bounds.
Let $S = [0, 1)$.

- S is bounded above by 2.
- S is also bounded above by 4.
- S has infinitely many upper bounds.
- 1 is a special upper bound for S.
Let $S = [0, 1)$.

- S is bounded above by 2.
- S is also bounded above by 4.
- S has infinitely many upper bounds.
- 1 is a special upper bound for S.
- 1 is the smallest or least upper bound for S.
The Set $[0, 1)$

Let $S = [0, 1)$.
Let $S = [0, 1)$.

- S is bounded below by -1.

The Set $[0, 1)$
Let \(S = [0, 1) \).

- \(S \) is bounded below by \(-1\).
- \(S \) is also bounded below by \(-2\).
Let $S = [0, 1)$.

- S is bounded below by -1.
- S is also bounded below by -2.
- S has infinitely many lower bounds.
Let $S = [0, 1)$.

- S is bounded below by -1.
- S is also bounded below by -2.
- S has infinitely many lower bounds.
- 0 is a special lower bound for S.

The Set $[0, 1)$
Let \(S = [0, 1) \).

- \(S \) is bounded below by \(-1\).
- \(S \) is also bounded below by \(-2\).
- \(S \) has infinitely many lower bounds.
- 0 is a special lower bound for \(S \).
- 0 is the largest or greatest lower bound for \(S \).
Definition: [Least Upper Bound]

We say that $\alpha \in \mathbb{R}$ is the least upper bound for a set $S \subset \mathbb{R}$ if

1. α is an upper bound for S, and
2. if γ is an upper bound for S, then $\alpha \leq \gamma$.

If a set S has a least upper bound, then we denote it by $lub(S)$.

The least upper bound of S is often called the supremum of S, denoted by $\text{sup}(S)$.
Definition: [Greatest Lower Bound]

We say that $\beta \in \mathbb{R}$ is the greatest lower bound for a set $S \subset \mathbb{R}$ if

1. β is a lower bound for S, and
2. if γ is a lower bound for S, then $\beta \geq \gamma$.

If a set S has a greatest bound, then we denote it by $glb(S)$.

The greatest lower bound of S is often called the infimum of S, denoted by $inf(S)$.
The Set $[0, 1)$

Let $S = [0, 1)$.
Let \(S = [0, 1) \).

\[\text{lub}(S) = 1 \]

\[\text{glb}(S) = 0 \]

Note: \(\text{glb}(S) \in S \), but \(\text{lub}(S) \not\in S \).
Let $S = [0, 1)$.

- $lub(S) = 1$
- $glb(S) = 0$
Let $S = [0, 1)$.

- $\text{lub}(S) = 1$
- $\text{glb}(S) = 0$

Note: $\text{glb}(S) = 0 \in S$,
The Set $[0, 1)$

Let $S = [0, 1)$.

- $\text{lub}(S) = 1$
- $\text{glb}(S) = 0$

Note: $\text{glb}(S) = 0 \in S$, but $\text{lub}(S) = 1 \notin S$.
Maximum and Minimum

Definition: [Maximum/Mininum]

1. If \(S \) contains \(\alpha = lub(S) \), then \(\alpha \) is called the *maximum* of \(S \) and is denoted by \(\max(S) \).
2. If \(S \) contains \(\beta = glb(S) \), then \(\beta \) is called the *minimum* of \(S \) and is denoted by \(\min(S) \).

Example: If \(S \) is a finite set with \(n \) elements

\[
S = \{a_1 < a_2 < \cdots < a_n\},
\]

then

- \(a_n = lub(S) = \max(S) \), and
- \(a_1 = glb(S) = \min(S) \).
The Empty Set

Problem: Does every set S that is bounded above have a LUB?

Axiom: [Least Upper Bound Property or LUBP]

A *nonempty* subset $S \subseteq \mathbb{R}$ that is bounded above always has a least upper bound.
Example

Example: Let S be the terms in the sequence $\{1 - \frac{1}{n}\}$.

That is,

$$S = \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots \}.$$

Note: Each term is less than 1, but we can get as close to 1 as we would like so long as the index n is large enough.

Hence,

$$1 = \text{lub}(S).$$

We also know that

$$1 = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right).$$

The fact that the limit and the least upper bound agree is no accident.