A splitter theorem for internally 4-connected graphs and binary matroids

Carolyn Chun1 Dillon Mayhew2 James Oxley3

12016 United States Naval Academy, USA
2Victoria University of Wellington, New Zealand
3Louisiana State University, USA

Connectivity
Connectivity

\[\oplus \]

\[\oplus ^2 \]

\[= \]

\[= \]
Connectivity

\[
\begin{align*}
\begin{array}{ccc}
\quad & \oplus & \quad \\
\quad & \quad & \quad \\
\quad \quad & \quad & \quad \\
\quad & \quad & \quad \\
\quad & \quad & \quad \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
\quad & \oplus & \quad \\
\quad & \quad & \quad \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
\quad & \oplus & \quad \\
\quad & \quad & \quad \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
\quad & \oplus & \quad \\
\quad & \quad & \quad \\
\end{array}
\end{align*}
\]
Connected matroids

Theorem (Tutte, 1966)

M 2-connected $\implies M \setminus e$ or M / e is 2-connected for all $e \in E(M)$
Connected matroids

Theorem (Tutte, 1966)
M 2-connected $\implies M\setminus e$ or M/e is 2-connected for all $e \in E(M)$

Theorem (Tutte, 1966)
M 3-connected $\implies \exists M' \leq M$ where M' is 3-connected and

$|E(M)| - |E(M')| = 1$
Connected matroids

Theorem (Tutte, 1966)

\[M \text{ 2-connected} \implies \exists e \in E(M) \] with \(M\setminus e \) or \(M/e \) is 2-connected for all \(e \in E(M) \)

Theorem (Tutte, 1966)

\[M \text{ 3-connected} \implies \exists M' \preceq M \text{ where } M' \text{ is 3-connected and} \]
\[|E(M)| - |E(M')| = 1 \text{ unless} \]
Connected matroids

Theorem (Tutte, 1966)

M 2-connected $\implies M \setminus e$ or M / e is 2-connected for all $e \in E(M)$

Theorem (Tutte, 1966)

M 3-connected $\implies \exists M' \preceq M$ where M' is 3-connected and

$$|E(M)| - |E(M')| = 1 \text{ unless } M \text{ is a wheel or whirl}$$
Connectivity

\[\oplus \]

\[\oplus_2 \]

\[\oplus_3 \]
Connectivity

\[\oplus = \oplus^2 = \oplus^3 = \oplus^3 = \]
Connectivity

\[\oplus \]

\[\oplus_2 \]

\[\oplus_3 \]

\[\ominus_3 \]
Connectivity

\[\oplus \]

\[\oplus_2 \]

\[\oplus_3 \]

\[\oplus_3 \]
Connectivity

internally 4-connected violator, AKA 4-fan
Theorem (2011)

Let M be an internally 4-connected binary matroid. Then M has an internally 4-connected minor M' with

$$1 \leq |E(M) - E(M')| \leq 3$$

unless

(i) a terrahawk; or (ii) a planar or Möbius quartic ladder.
Theorem (2011)

Let M be an internally 4-connected binary matroid. Then M has an internally 4-connected minor M' with

$$1 \leq |E(M) - E(M')| \leq 3$$

unless M or M^* is the cycle matroid of

(i) a terrahawk; or (ii) a planar or Möbius quartic ladder.
Theorem (Brylawski 1972, Seymour 1977)

M, N 2-connected, $N \preceq M$, and $e \in E(M) - E(N) \implies M \setminus e$ or M / e is 2-connected with N as a minor.
3-connected matroids

Theorem (Seymour’s Splitter Theorem)

M & N 3-connected and $N \not\subseteq M$, where $|E(N)| \geq 4$ and, if N is a wheel/whirl, then M has no larger wheel/whirl-minor $\implies \exists M'$ where $M' \not\subseteq M$ and $N \leq M'$ and $|E(M)| - |E(M')| = 1$
Internally 4-connected binary matroids

Graphs are binary matroids, what do we know for graphs?

Johnson and Thomas (2001)
Internally 4-connected binary matroids

Graphs are binary matroids, what do we know for graphs?
Johnson and Thomas (2001)

What about binary matroids?
Geelen and Zhou (2006)
Zhou (2012)
Internally 4-connected binary matroids

Graphs are binary matroids, what do we know for graphs?
Johnson and Thomas (2001)

What about binary matroids?
Geelen and Zhou (2006)
Zhou (2012)

These allow the intermediate matroid to satisfy some weaker form of connectivity.
Internally 4-connected binary matroids

Graphs are binary matroids, what do we know for graphs?
Johnson and Thomas (2001)

What about binary matroids?
Geelen and Zhou (2006)
Zhou (2012)

These allow the intermediate matroid to satisfy some weaker form of connectivity.

What did Johnson and Thomas show, exactly?
Splitter Theorem for internally 4-connected graphs
(Generating internally 4-connected graphs, JCTB 2001)
Thor Johnson and Robin Thomas

CPL\textsubscript{k}

CML\textsubscript{k}

CPB-W\textsubscript{k}

CMB-W\textsubscript{k}
Theorem (Theorem 1)

G & H internally 4-connected graphs and $H \nsubseteq G$ and, if H is a CPL_k
Theorem (Theorem 1)

G & H internally 4-connected graphs and $H \not\preceq G$ and, if H is a CPL_k/CML_k
Thor Johnson and Robin Thomas

Theorem (Theorem 1)

G & H internally 4-connected graphs and $H \not\subseteq G$ and, if H is a $\text{CPL}_k/\text{CML}_k/\text{CPB-W}_k$
Theorem (Theorem 1)

G & H internally 4-connected graphs and H $\not\subseteq$ G and, if H is a CPL$_k$/CML$_k$/CPB-W$_k$/CMB-W$_k$
Theorem (Theorem 1)

$G \& H$ internally 4-connected graphs and $H \not\leq G$ and, if H is a $CPL_k/CML_k/CPB-W_k/CMB-W_k$, then G has no QPL_k
Theorem (Theorem 1)

\(G \& H\) internally 4-connected graphs and \(H \nsubseteq G\) and, if \(H\) is a \(\text{CPL}_k/\text{CML}_k/\text{CPB}-W_k/\text{CMB}-W_k\), then \(G\) has no \(\text{QPL}_k/\text{QML}_{k+1}\)
Theorem (Theorem 1)

G & H internally 4-connected graphs and $H \preceq G$ and, if H is a $CPL_k/CML_k/CPB-W_k/CMB-W_k$, then G has no $QPL_k/QML_{k+1}/QPB-W_k$
Thor Johnson and Robin Thomas

Theorem (Theorem 1)

G & H internally 4-connected graphs and $H \not\subseteq G$ and, if H is a $CPL_k/CML_k/CPB-W_k/CMB-W_k$, then G has no $QPL_k/QML_{k+1}/QPB-W_k/QMB-W_k$-minor
Theorem (Theorem 1)

G & H internally 4-connected graphs and $H \not\cong G$ and, if H is a $CPL_k/CML_k/CPB-W_k/CMB-W_k$, then G has no $QPL_k/QML_{k+1}/QPB-W_k/QMB-W_k$-minor $\implies \exists H' \not\cong G$ where
Theorem (Theorem 1)

G & H internally 4-connected graphs and $H \not\cong G$ and, if H is a $CPL_k/CML_k/CPB-W_k/CMB-W_k$, then G has no $QPL_k/QML_{k+1}/QPB-W_k/QMB-W_k$-minor $\implies \exists H' \not\cong G$ where

(i) $H'/e = H$ for some edge e; or
Theorem (Theorem 1)

$G \& H$ internally 4-connected graphs and $H \nsubseteq G$ and, if H is a $\text{CPL}_k/\text{CML}_k/\text{CPB-W}_k/\text{CMB-W}_k$, then G has no $\text{QPL}_k/\text{QML}_{k+1}/\text{QPB-W}_k/\text{QMB-W}_k$-minor $\implies \exists H' \nsubseteq G$ where

(i) $H'/e = H$ for some edge e; or

(ii) $E(H') = E(H) \cup \{e_1, e_2, \ldots, e_t\}$, where $(V(H'), E(H) \cup \{e_1, e_2, \ldots, e_i\})$ has at most one 4-fan for all $i \in \{1, 2, \ldots, t - 1\}$ and $(V(H'), E(H) \cup \{e_1, e_2, \ldots, e_t\})$ is internally 4-connected; or
Theorem (Theorem 1)

G & H internally 4-connected graphs and $H \not\subseteq G$ and, if H is a $CPL_k/CML_k/CPB-W_k/CMB-W_k$, then G has no $QPL_k/QML_{k+1}/QPB-W_k/QMB-W_k$-minor $\implies \exists H' \not\subseteq G$ where

(i) $H'/e = H$ for some edge e; or

(ii) $E(H') = E(H) \cup \{e_1, e_2, \ldots, e_t\}$, where $(V(H'), E(H) \cup \{e_1, e_2, \ldots, e_i\})$ has at most one 4-fan for all $i \in \{1, 2, \ldots, t - 1\}$ and $(V(H'), E(H) \cup \{e_1, e_2, \ldots, e_t\})$ is internally 4-connected; or

(iii) H' is obtained from H by a quadrangular, pentagonal, or hexagonal extension.
Theorem (Theorem 1)

\(G \& H\) internally 4-connected graphs and \(H \nsubseteq G\) and, if \(H\) is a \(\text{CPL}_k/\text{CML}_k/\text{CPB-W}_k/\text{CMB-W}_k\), then \(G\) has no \(\text{QPL}_k/\text{QML}_{k+1}/\text{QPB-W}_k/\text{QMB-W}_k\)-minor \(\implies \exists H' \nsubseteq G\) where

(i) \(H'/e = H\) for some edge \(e\); or

(ii) \(E(H') = E(H) \cup \{e_1, e_2, \ldots, e_t\}\), where

\((V(H'), E(H) \cup \{e_1, e_2, \ldots, e_i\})\) has at most one 4-fan for all \(i \in \{1, 2, \ldots, t - 1\}\) and \((V(H'), E(H) \cup \{e_1, e_2, \ldots, e_i\})\) is internally 4-connected; or

(iii) \(H'\) is obtained from \(H\) by a quadrangular, pentagonal, or hexagonal extension.
Theorem (Theorem 2)

G & H internally 4-connected graphs and $H \nsubseteq G$ and, if H is a $CPL_k/CML_k/CPB-W_k/CMB-W_k$, then G has no $QPL_k/QML_{k+1}/QPB-W_k/QMB-W_k$-minor.
Theorem (Theorem 2)

G & H internally 4-connected graphs and $H \nsubseteq G$ and, if H is a $CPL_k/CML_k/CPB-W_k/CMB-W_k$, then G has no $QPL_k/QML_{k+1}/QPB-W_k/QMB-W_k$-minor

AND $H \nsubseteq K_{3,3}$, Cube, and $G \nsubseteq CPL,CML,CPB-W,CMB-W$, and for $V' \subseteq V(H)$ the set of degree-3 vertices in H, the graph $H[V']$ has circuits and trees as its components
Theorem (Theorem 2)

G & H internally 4-connected graphs and $H \not\cong G$ and, if H is a $CPL_k/CML_k/CPB-W_k/CMB-W_k$, then G has no $QPL_k/QML_{k+1}/QPB-W_k/QMB-W_k$-minor

AND $H \not\cong K_{3,3}$, $Cube$, and $G \not\cong CPL,CML,CPB-W,CMB-W$, and for $V' \subseteq V(H)$ the set of degree-3 vertices in H, the graph $H[V']$ has circuits and trees as its components $\implies \exists H' \not\cong G$ where
Theorem (Theorem 2)

G & H internally 4-connected graphs and $H \not\cong G$ and, if H is a $\text{CPL}_k/\text{CML}_k/\text{CPB-W}_k/\text{CMB-W}_k$, then G has no $\text{QPL}_k/\text{QML}_{k+1}/\text{QPB-W}_k/\text{QMB-W}_k$-minor

AND $H \not\cong K_{3,3}$, Cube, and $G \not\cong \text{CPL},\text{CML},\text{CPB-W},\text{CMB-W}$, and for $V' \subseteq V(H)$ the set of degree-3 vertices in H, the graph $H[V']$ has circuits and trees as its components $\implies \exists H' \not\cong G$ where

(i) $H'/e = H$ for some edge e; or

(ii) $H'\setminus e = H$ for some edge e; or

(iii) H' is obtained from H by a quadrangular, pentagonal, or hexagonal extension.
K_n
Internally 4-connected binary matroids

How can we get an internally 4-connected minor of this?
Internally 4-connected binary matroids

How can we get an internally 4-connected minor of this?
Internally 4-connected binary matroids

How can we get an internally 4-connected minor of this?
Internally 4-connected binary matroids

How can we get an internally 4-connected minor of this?
Internally 4-connected binary matroids

Theorem

M, N internally 4-connected binary matroids & $N \not\leq M \implies \exists M',$ internally 4-connected, where $N \not\leq M' \not\leq M$

&
Theorem

\[M, N \text{ internally 4-connected binary matroids} \land N \not\preceq M \implies \exists M', \text{ internally 4-connected, where } N \preceq M' \not\preceq M \land |E(M)| - |E(M')| \leq 3 \text{ or, (up to duality),} \]
Internally 4-connected binary matroids

Theorem

M, N internally 4-connected binary matroids & $N \leq M \nRightarrow \exists M',$ internally 4-connected, where $N \leq M' \leq M$

& $|E(M)| - |E(M')| \leq 3$ or, (up to duality),

(i) $|E(M)| - |E(M')| = 4$ &
Theorem

M, N internally 4-connected binary matroids $\& N \lesssim M \implies \exists M', \text{ internally 4-connected, where } N \preceq M' \preceq M$

$\& |E(M)| - |E(M')| \leq 3 \text{ or, (up to duality), }$

(i) $|E(M)| - |E(M')| = 4 \&$

get M' from M by a central cocircuit deletion in a good augmented 4-wheel or a ladder-compression move; or . . .
Internally 4-connected binary matroids

Theorem

\(M, N \) internally 4-connected binary matroids \& \(N \not\preceq M \implies \exists M', \) internally 4-connected, where \(N \preceq M' \preceq M \)

\& \(|E(M)| - |E(M')| \leq 3 \) or, (up to duality),

(i)

(ii) get \(M' \) from \(M \) by trimming a double fan, a bowtie ring, or a “ladder;” or . . .
Internally 4-connected binary matroids

Theorem

Let M, N be internally 4-connected binary matroids such that $N \subsetneq M$. Then there exists M', internally 4-connected, where $N \subseteq M' \subseteq M$ and $|E(M)| - |E(M')| \leq 3$ or, (up to duality),

(i) get M' from M by trimming a double fan, a bowtie ring, or a "ladder;" or . . .

(ii) get M' from M by trimming a double fan, a bowtie ring, or a "ladder;" or . . .
Internally 4-connected binary matroids

Theorem

\(M, N \) internally 4-connected binary matroids & \(N \preceq M \implies \exists M', \text{ internally 4-connected, where } N \preceq M' \preceq M \)

& \(|E(M)| - |E(M')| \leq 3 \) or, (up to duality),

(i)

(ii) get \(M' \) from \(M \) by trimming a double fan, a bowtie ring, or a “ladder;” or …
Internally 4-connected binary matroids

(iii) get M' from M by an enhanced-ladder move or lobster move; or . . .
(iii) get M' from M by an enhanced-ladder move or lobster move; or \ldots
Internally 4-connected binary matroids

(iii) get M' from M by an enhanced-ladder move or lobster move; or ...
(iii) get M' from M by an enhanced-ladder move or lobster move; or . . .
Internally 4-connected binary matroids

(iii) get M' from M by an enhanced-ladder move or lobster move; or ...
Internally 4-connected binary matroids

Theorem

\(M, N \) internally 4-connected binary matroids & \(N \preceq M \implies \exists M', \text{ internally 4-connected}, \text{ where } N \preceq M' \preceq M \)

&
Theorem

M, N internally 4-connected binary matroids & $N \not\leq M \implies \exists M',$ internally 4-connected, where $N \leq M' \not\leq M$

& $|E(M)| - |E(M')| \leq 3$ or, (up to duality),

(i)

(ii)

(iii)

or . . .
Internally 4-connected binary matroids

(iv) \((M, N)\) is (QML,CML) or \ldots
Internally 4-connected binary matroids

(iv) \((M, N)\) is (QML,CML) or \((T^*\text{MM},\text{TMM})\); or . . .
Internally 4-connected binary matroids

(iv) (M, N) is (QML,CML) or $((T^*MM)^*,(TMM)^*)$; or \ldots
Internally 4-connected binary matroids

(iv) \((M, N)\) is (QML, CML) or \(((T^*MM)^*,(TMM)^*)\); or \ldots\
(v) \((M, N)\) is one of 31 *interesting pairs* (A splitter theorem for internally 4-connected binary matroids: small matroids, arXiv).

interesting pair (n.) \(|E(M)| \leq 15\) and \(M\) and \(N\) are internally 4-connected, but no proper minor of \(M\) with a proper \(N\)-minor is internally 4-connected
Splitter Theorem for internally 4-connected binary matroids

Theorem

\(M, N \) internally 4-connected binary matroids & \(N \preceq M \implies \exists M', \text{ internally 4-connected, where } N \preceq M' \preceq M \) & |
\(E(M) \) − |\(E(M') \) | \(\leq 3 \) or \(M \) and \(N \) are Möbius ladders or Möbius matroids or comprise an interesting pair or, (up to duality), \(M' \) is obtained by one of these moves in \(M \):

(i)

(ii)

(iii)
Compare and contrast

Johnson & Thomas splitter theorem (Theorem 1):

(i) require, if H has a certain structure, then G avoids certain minor; and
(ii) have one unbounded move from H to get an internally 4-connected intermediate graph; and
(iii) have four nice bounded (≤ 4) moves from H to get an intermediate graph (might not be internally 4-connected); and
(iv) is useful for finding excluded minor results.

Chun, Mayhew, & Oxley splitter theorem

(i) give no restriction for N; and
(ii) have several highly-structured unbounded moves from M to internally 4-connected intermediate matroid; and
(iii) have nice bounded (≤ 4) moves from M to internally 4-connected intermediate matroid; and
(iv) is useful for finding excluded minor results.
Compare and contrast

Johnson & Thomas splitter theorem (Theorem 1):

(i) require, if H has a certain structure, then G avoids certain minor; and

(ii) have one unbounded move from H to get an internally 4-connected intermediate graph; and

(iii) have four nice bounded (≤ 4) moves from H to get an intermediate graph (might not be internally 4-connected); and

(iv) is useful for finding excluded minor results.

Chun, Mayhew, & Oxley splitter theorem

(i) give no restriction for N; and

(ii) have several highly-structured unbounded moves from M to internally 4-connected intermediate matroid; and

(iii) have nice bounded (≤ 4) moves from M to internally 4-connected intermediate matroid; and

(iv) is useful for finding excluded minor results.
Compare and contrast

Johnson & Thomas splitter theorem (Theorem 1):
(i) require, if H has a certain structure, then G avoids certain minor; and
(ii) have one unbounded move from H to get an internally 4-connected intermediate graph; and

Chun, Mayhew, & Oxley splitter theorem:
(i) give no restriction for N; and
(ii) have several highly-structured unbounded moves from M to internally 4-connected intermediate matroid; and
(iii) have nice bounded (≤ 4) moves from M to internally 4-connected intermediate matroid; and
(iv) is useful for finding excluded minor results.
Compare and contrast

Johnson & Thomas splitter theorem (Theorem 1):

(i) require, if H has a certain structure, then G avoids certain minor; and

(ii) have one unbounded move from H to get an internally 4-connected intermediate graph; and

(iii) have four nice bounded (≤ 4) moves from H to get an intermediate graph (might not be internally 4-connected); and

Chun, Mayhew, & Oxley splitter theorem

(i) give no restriction for N; and

(ii) have several highly-structured unbounded moves from M to internally 4-connected intermediate matroid; and

(iii) have nice bounded (≤ 4) moves from M to internally 4-connected intermediate matroid; and

(iv) is useful for finding excluded minor results.
Compare and contrast

Johnson & Thomas splitter theorem (Theorem 1):

(i) require, if H has a certain structure, then G avoids certain minor; and

(ii) have one unbounded move from H to get an internally 4-connected intermediate graph; and

(iii) have four nice bounded (≤ 4) moves from H to get an intermediate graph (might not be internally 4-connected); and

(iv) is useful for finding excluded minor results.

Chun, Mayhew, & Oxley splitter theorem

(i) give no restriction for N; and

(ii) have several highly-structured unbounded moves from M to internally 4-connected intermediate matroid; and

(iii) have nice bounded (≤ 4) moves from M to internally 4-connected intermediate matroid; and

(iv) is useful for finding excluded minor results.
Compare and contrast

Johnson & Thomas splitter theorem (Theorem 1):

(i) require, if H has a certain structure, then G avoids certain minor; and

(ii) have one unbounded move from H to get an internally 4-connected intermediate graph; and

(iii) have four nice bounded (≤ 4) moves from H to get an intermediate graph (might not be internally 4-connected); and

(iv) is useful for finding excluded minor results.

Chun, Mayhew, & Oxley splitter theorem

(i) give no restriction for N; and

(ii) have several highly-structured unbounded moves from M to internally 4-connected intermediate matroid; and

(iii) have nice bounded (≤ 4) moves from M to internally 4-connected intermediate matroid; and

(iv) is useful for finding excluded minor results.
Compare and contrast

Johnson & Thomas splitter theorem (Theorem 1):

(i) require, if H has a certain structure, then G avoids certain minor; and

(ii) have one unbounded move from H to get an internally 4-connected intermediate graph; and

(iii) have four nice bounded (≤ 4) moves from H to get an intermediate graph (might not be internally 4-connected); and

(iv) is useful for finding excluded minor results.

Chun, Mayhew, & Oxley splitter theorem

(i) give no restriction for N; and

(ii) have several highly-structured unbounded moves from M to internally 4-connected intermediate matroid; and

(iii) have nice bounded (≤ 4) moves from M to internally 4-connected intermediate matroi; and

(iv) is useful for finding excluded minor results.
Splitter Theorem for internally 4-connected binary matroids

Theorem

\[M, N \text{ internally 4-connected binary matroids } \land N \not\preceq M \implies \exists M', \text{ internally 4-connected, where } N \preceq M' \not\preceq M \land |E(M)| - |E(M')| \leq 3 \text{ or } M \text{ and } N \text{ are Möbius ladders or Möbius matroids or comprise an interesting pair or, (up to duality), } M' \text{ is obtained by one of these moves in } M: \]

(i) \[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{figure1}
\end{array}
\]

(ii) \[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{figure2}
\end{array}
\]

(iii) \[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{figure3}
\end{array}
\]
Cor: Splitter Theorem for internally 4-connected graphs

Theorem

G, H internally 4-connected graphs & $H \preceq G \implies \exists G',$ internally 4-connected, where $H \preceq G' \preceq G$ & $|E(G)| - |E(G')| \leq 3$ or G and H are Möbius ladders or comprise one of 12 interesting pairs or, (up to duality), G' is obtained by one of these moves in G:

(i)

(ii)

(iii)
Cor: back to internally 4-connected binary matroids

Theorem

\(M, N \) internally 4-connected binary matroids \& \(N \preceq M \implies \exists M', \text{ internally 4-connected, where } N \preceq M' \preceq M \& |E(M)| - |E(M')| \leq 6 \) or \(M \) and \(N \) are Möbius ladders or Möbius matroids or, (up to duality), \(M' \) is obtained by one of these moves in \(M \):

(i)

(ii)