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Modular arithmetic

In class, we have seen rules for addition, subtraction, and multiplication modulo a positive integer m. Next,
we will study division modulo m.

We have seen that the ≡ relation is similar to equality in many respects, especially when we do simple
arithmetic. What happens if we wish to divide? If ac = bc (mod m), for some integers a, b, c, does it mean
that we can divide both sides by c? Taking a = 5, b = 7, c = 7,m = 14, we see that 5× 7 ≡ 7× 7 (mod 14),
but 5 6≡ 7 (mod 14). Considering a few more examples, we see that division is sometimes possible. For
example,

15× 9 ≡ 57× 9 (mod 14), and
15 ≡ 57 (mod 14).

Similarly,

3× 55 ≡ 31× 55 (mod 14), and
3 ≡ 31 (mod 14).

Evidently, the rules for modular division are different from those for the integers. The property that distin-
guishes the last two examples from the first is that the numbers by which we are dividing (9 and 55) and
the modulus 14 are co-prime, i.e., have GCD equal to 1. Indeed, we have that

Proposition 1 For any integers a, b, c, m such that m > 1 and gcd(c,m) = 1, if ac ≡ bc (mod m), then a ≡ b
(mod m).

Proof : If m|[(a− b)c], and gcd(c,m) = 1, by a property we proved in class we have m|(a− b).

Division of a real number x by another real y 6= 0 is the same as multiplying x by 1/y (also written as y−1),
and that y−1 is also called the multiplicative inverse of y. Do we have a similar notion of a multiplicative
inverse modulo m? The defining property of multiplicative inverse y−1 is that when we multiply y with its
inverse, we get 1. Going back to the examples above, where we were able to divide by 9 and 55, we see that

9× 11 ≡ 1 (mod 14), and
55× 13 ≡ 1 (mod 14).

So 11 and 13 are the multiplicative inverses of 9 and 55, respectively, modulo 14. How do we find these
multiplicative inverses? Given an integer a such that gcd(a,m) = 1, how do we find its inverse a−1, i.e., an
integer b such that ab ≡ 1 (mod m)? The Bézout Lemma again comes to our rescue, and gives us a method
to find the inverse b.

Theorem 2 For any integer a such that gcd(a,m) = 1, there is an inverse a−1, i.e., an integer b such that ab ≡ 1
(mod m).

Proof : By the Bézout Lemma, there are integers x, y such that ax + my = gcd(a,m) = 1. In other
words ax− 1 = −my or equivalently, ax ≡ 1 (mod m). So we may take x to be the inverse we seek.

When gcd(a,m) 6= 1, a multiplicative inverse modulo m cannot exist. Suppose, for sake of contradiction,
that it does. Say it is b, and we have ab ≡ 1 (mod m), i.e., ax−1 = my for some integer y. Let d = gcd(a,m).
Since d|a and d|m, we have that d|(ax−my), i.e., d|1. This is impossible, as d = gcd(a,m) > 1. In particular,
the integer 7 does not have a multiplicative inverse modulo 14.

The proof of Theorem 2 above also provides a way for finding the multiplicative inverse of a given number
when it exists. Using the Extended Euclidean algorithm, we find integers x, y such that ax + my = 1
whenever gcd(a,m) = 1. The number x would then be a multiplicative inverse for a, modulo m.

1



Example 1 Find a multiplicative inverse of 55 modulo 14.

Solution : We use the Extended Euclidean algorithm.

Step a b division: a = bq + r r u v x = v y = u− vq
1 55 14 55 = 3× 14 + 13 13 1 −1 −1 4
2 14 13 14 = 1× 13 + 1 1 0 1 1 −1
3 13 1 13 = 13× 1 + 0 0 1 0 0 1
4 1 0 1 0

So we see that 55(−1) + 14(4) = 1, i.e., 55(−1) ≡ 1 (mod 14), so −1 is a multiplicative inverse of 55 mod-
ulo 14. This is consistent with the one we presented above, as −1 ≡ 13 (mod 14).
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