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Abstract. We show that if the universal cover of a closed smooth manifold admitting
a metric with non-negative Ricci curvature is formal, then the manifold itself is for-
mal. We reprove a result of Fiorenza–Kawai–Lê–Schwachhöfer, that closed orientable
manifolds with a non-negative Ricci curvature metric and sufficiently large first Betti
number are formal. Our method allows us to remove the orientability hypothesis; we
further address some cases of non-closed manifolds.

A long-standing theme in the study of smooth manifolds is to find topological obstruc-
tions to the existence of certain geometric structures. A cornerstone result is that of
Deligne–Griffiths–Morgan–Sullivan [DGMS75], that manifolds admitting a complex struc-
ture satisfying the ∂∂-lemma are formal. That is, the (weak) homotopy type of its com-
mutative differential graded algebra of de Rham forms is that of its de Rham cohomology
algebra equipped with trivial differential.

Certain such obstructions behave well under non-zero degree maps of closed orientable
manifolds. For example, as shown by Taylor, non-trivial triple Massey products pull back
non-trivially under non-zero degree maps; Crowley–Nördstrom’s Bianchi–Massey tensor
[CN20] exhibits the same behavior, as does non-formality itself [MSZ23].

In this note, we will observe that using the Cheeger–Gromoll splitting theorem, one can
employ formality as an obstruction to non-negative curvature which is preserved under
potentially infinite-degree maps:

Theorem 1. A connected closed manifold admitting a metric with non-negative Ricci
curvature is formal if its universal covering space is formal.

Before proving this, we record the relevant parts of the statements of the Gromoll–
Cheeger splitting theorem, and the formal domination theorem of [MSZ23], that we will
use:

Theorem 2. ([CG71], [CG72], see formulation in [Be07, Corollary 6.67, (b) and (c)]) Let
(M, g) be a closed connected Riemannian manifold with non-negative Ricci curvature. Then
a finite covering of M is diffeomorphic to M̂ × T q, where M̂ is a closed simply connected
manifold, and T q is a torus of some dimension q.

Theorem 3. ([MSZ23, Theorem A]) Suppose Y
f−→ X is a proper smooth map between

smooth orientable manifolds which contains some (hence any) rational Borel–Moore fun-
damental class of X in the image of the induced map on rational Borel–Moore homology.
Then, if Y is formal, X is also formal. In particular, if Y and X are closed orientable
manifolds and f is a non-zero degree map, then formality of Y implies formality of X.

As a consequence of Theorem 3, we have the following useful lemma:

Lemma 4. If the orientable double cover M ′ of a smooth non-orientable (not necessarily
compact) manifold M is formal, then M is formal as well.

Proof. Consider the total space of the non-orientable real line bundle over M with first
Stiefel–Whitney class w1 equal to w1(TM) (i.e., the orientation line bundle). This is an
orientable manifold which is doubly covered by the pullback of the line bundle over the
orientable double cover M ′ of M ; namely, this is the total space of the trivial real line
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bundle over M ′. The covering map is proper, and it is surjective on rational Borel–Moore
homology. Hence the total space of the orientation line bundle over M is formal if the
total space of the trivial line bundle over M ′ is formal. The formality of the total space of
a vector bundle is equivalent to the formality of its base space, since the inclusion of the
zero section is a homotopy equivalence. □

Proof of Theorem 1. Indeed, there is some finite cover of our manifold M which is of the
form T q × M̂ for a simply connected M̂ . Since T q is formal and a product of two spaces
is formal if and only if each factor is formal, the formality of this cover is equivalent to the
formality of M̂ , which is equivalent to the formality of the universal cover Rq × M̂ . Hence,
if the universal cover is formal, T q × M̂ is formal. Then by Theorem 3, if M is orientable,
it is formal. If M is non-orientable, we conclude that its orientable double cover is formal,
and hence M is formal by Lemma 4. □

Remark 5. As a consequence, we recover the well-known fact that non-toral nilmanifolds
do not admit metrics with non-negative Ricci curvature, as they are not formal. More
generally, any non-formal aspherical closed Riemannian manifold has a direction of negative
Ricci curvature.

We reobtain the result that closed orientable Riemannian manifolds with non-negative
Ricci curvature and sufficiently large first Betti number are formal, originally due to
Fiorenza–Kawai–Lê–Schwachhöfer [FKLS21, Corollary 5.4]. They prove the result more
generally for closed orientable manifolds all of whose harmonic 1-forms are parallel, using
their theory of Poincaré differential algebras of Hodge type and a generalization of the
Cheeger–Gromoll splitting theorem proved therein. In the case of non-negative Ricci cur-
vature, we can remove the orientability hypothesis. Below we will also consider cases in
which one can remove the hypothesis of having the manifold be closed.

Proposition 6. (cf. [FKLS21, Corollary 5.4]) A connected closed (not necessarily ori-
entable) manifold M of dimension n with b1 ≥ n−6, which admits a metric of non-negative
Ricci curvature, is formal.

Proof. By the Cheeger–Gromoll splitting theorem, the universal cover of M is M̂ × Rq,
where q ≥ b1(M) and M̂ is a closed simply connected manifold. Since b1(M) ≥ n− 6, the
dimension of M̂ is at most six. Hence M̂ is formal [M79], and so M̂ × Rq is formal. Now
by Theorem 1, we conclude that M is formal. □

In this generality, Proposition 6 is sharp, as there exists a simply connected closed
non-formal seven–manifold with positive Ricci curvature (in fact, admitting a positive
Einstein metric), see [FFKM23, manifold Q(1, 1, 1) on p.2, p.5]. Cases of Proposition 6
with larger bounds on b1 had been known earlier. Indeed, as was known to Bochner, a
closed Riemannian manifold with non-negative Ricci curvature has b1 ≤ n, and if b1 = n,
it is isometric to a flat torus, which is formal. Furthermore, Kotschick proved that a closed
orientable n–manifold with a non-negative Ricci curvature metric and b1 = n− 2 is in fact
geometrically formal [Ko17, Proposition 16], i.e. it admits a metric wherein the harmonic
forms are closed under wedge product, implying formality. As remarked in loc. cit., if
b1 ≥ n − 1 on a closed orientable n-manifold with a non-negative Ricci curvature metric,
then in fact b1 = n. It is somewhat surprising that in the presence of non-negative Ricci
curvature, a large first Betti number ensures formality, since often in other scenarios one
hopes to argue formality using instead a scarcity of cohomology (as in e.g. [M79]).

Compact manifolds with boundary. For a compact manifold M with boundary ∂M ,
denote by D(M) its double, i.e. the closed manifold obtained by gluing two copies of M
by the identity along ∂M . If M is oriented, then putting the opposite orientation on the
second copy of M induces an orientation on D(M). We partially extend Proposition 6 to
compact manifolds with boundary.



3

Lemma 7. We have b1(D(M)) ≥ b1(M).

Proof. The ramified double cover D(M) → M is a retraction for the inclusion M ↪→ D(M),
hence the homology of D(M) surjects onto that of M . □

Lemma 8. If D(M) is formal, then M is formal.

Proof. The retract of a formal space is formal (see [FOT08, Example 2.88], or apply
[MSZ23, Theorem B]). □

Corollary 9. Let M be a connected compact n–manifold with boundary ∂M , with b1(M) ≥
n − 6. If M admits a Riemannian metric with positive Ricci curvature in which ∂M is
strictly convex, then M is formal.

Proof. Strict convexity of the boundary ensures that the conditions of Perelman’s gluing
construction [Pe97, Section 4] are satisfied by two copies of M (where we identify the
boundaries via the identity map); we thus have that D(M) admits a metric of positive Ricci
curvature. The double D(M) is a closed n–manifold, with b1(D(M)) ≥ b1(M) ≥ n − 6
by Lemma 7, so it is formal by Proposition 6. If it is orientable, then it is formal by
Proposition 6, and so by Lemma 8, M is also formal. If D(M) is non-orientable, then we
apply Proposition 6 to its orientable double cover (which has b1 ≥ b1(D(M))) followed by
Lemma 4. □

In fact, b1(D(M)) is determined by b1(M) and the dimension of the relative rational
homology H1(M,∂M), giving us the following generalization:

Corollary 10. Let M be a connected compact n–manifold with boundary ∂M , with b1(M) ≥
n− 6− dimH1(M,∂M). If M admits a Riemannian metric with positive Ricci curvature
in which ∂M is strictly convex, then M is formal.

Proof. Denote by i the inclusion ∂M ↪→ M . From the Mayer–Vietoris long exact sequence
in rational homology

· · · → H∗(∂M) → H∗(M)⊕H∗(M) → H∗(D(M)) → H∗−1(∂M) → · · ·
we obtain the exact sequence

0 → ker i∗ → H∗(∂M) → H∗(M)⊕H∗(M) → H∗(D(M)) → ker i∗−1 → 0,

giving us
2b1(M) = b1(∂M)− dimker i∗1 − dimker i∗0 + b1(D(M)).

On the other hand, from the long exact sequence in rational homology for the pair
(M,∂M) we obtain the exact sequence

0 → ker i∗ → H∗(∂M) → H∗(M) → H∗(M,∂M) → ker i∗−1 → 0,

giving us

b1(M) = b1(∂M)− dimker i∗1 − dimker i∗0 + dimH1(M,∂M).

Combining these two equalities we obtain b1(D(M)) − b1(M) = dimH1(M,∂M), and
we apply Corollary 9. □

Complete open manifolds. We also have the following analogue of Theorem 1:

Theorem 11. A connected manifold, without boundary, admitting a complete metric with
non-negative sectional curvature is formal if its universal covering space is formal.

Proof. For simplicity let us begin with the case of M being orientable. By the soul theorem
[CG72], there is a closed totally geodesic submanifold S of M such that the total space of
its normal bundle ν in M is diffeomorphic to M . Since S is totally geodesic, its induced
metric also has non-negative sectional curvature.

The inclusion of S into ν is a homotopy equivalence and hence formality of S is equivalent
to formality of M . Now, S need not be orientable, so let us argue that we can reduce to the
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orientable case. If S if non-orientable, consider its orientable double cover S′ p−→ S. Note
that S′ also carries a metric of non-negative sectional curvature by pullback. Furthermore,
the total space of p∗ν is a double cover of the total space of ν (note that both of these
spaces are orientable). Since the covering map is proper, it induces a map on degree n
rational Borel–Moore homology. This induced map is surjective, and hence by [MSZ23,
Theorem A, (2)] formality of the total space of p∗ν (which is equivalent to the formality
of S′) implies formality of the total space of ν. We can thus assume S is orientable (in
addition to M being orientable), and conclude our proof by using Theorem 1.

Now we show how to reduce to the above in case M is non-orientable. First, take
a soul S for our non-orientable manifold M ; denote the normal bundle by E and the
inclusion of this soul by i. Now take the double cover S′ p−→ S of the soul corresponding
to w1(i

∗(TM)) ∈ H1(S;Z/2Z). Note, this class is equal to w1(TS) +w1(E), and this may
not be the orientation double cover. The total space of p∗E is then orientable, and we are
in the setting of the previous paragraphs; the total space of p∗E is also a double cover of
the total space of E. We can then apply Lemma 4 to conclude that the total space of E,
and hence M , is formal. □

For example, using the Killing–Hopf theorem, we thus see that every non-negative cur-
vature space form is formal. We immediately have the following analogue to Proposition 6:

Corollary 12. Let M be a connected open n–manifold with b1 ≥ n − 7. If M admits a
complete Riemannian metric with non-negative sectional curvature, then it is formal.

Remark 13. Throughout the above, instead of invoking the result of formality being
preserved under domination [MSZ23], one could also wish to invoke a statement of the
form “if X is a formal space, acted on by a finite group G, then X/G is formal as well”. In
the case of a Galois covering Y ′ → Y , that would then give that formality of Y ′ implies
formality of Y . The Cheeger–Gromoll splitting theorem tells us there is a finite cover of
a closed non-negatively curved manifold M which is diffeomorphic to T k ×N , where N is
simply connected. Now, this finite cover of M may not be Galois, but some further finite
cover is, since every finite index subgroup of a group G contains a finite index subgroup
which is normal in G. A finite covering of T k × N is again of the form T k × N . Hence
we could, without loss of generality, replace any finite cover by a Galois finite cover in our
arguments.

However, as far as the author can tell, the only known argument (not using [MSZ23])
that X formal implies X/G formal relies on the result that for a formal space X with a
G-action for a finite group G, there is a zigzag of quasi-isomorphisms between APL(X)
and H∗(X;Q) witnessing the formality of X that is simultaneously G-equivariant. This is
proven for finite-type spaces X with b1 = 0 in [Pa82, Corollary 2.10, Corollary 2.11]. In
[FOT08, Remark 3.30] it is stated that the result follows from the results of [Op84]. The
proofs of [Op84] deal with so-called nice spaces, which have (globally) finitely generated
minimal models. In both cases, it is stated that the results of the respective papers can
be extended ([Pa82, comment above Corollary 2.10], [Op84, Remark on p.180]) to the
generality required here, with proofs omitted. For the sake of completeness and as an
illustration of the main result therein, we instead employ [MSZ23].
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