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Abstract

We investigate the topology of the space of almost complex structures (inducing
a fixed orientation) on the six—sphere; we determine its rational homotopy type to be
that of RIP7, with the inclusion of the subspace SO(7)/G> of almost complex structures
orthogonal with respect to the round metric, provided by the octonions, inducing an
isomorphism on rational homotopy groups. Though additionally both of these spaces
have fundamental groups of order two, they are not homotopy equivalent. We then
go on to consider the naive and homotopy quotients of the space of almost complex
structures and its subspace of integrable structures by the action of the diffeomorphism
group of the sphere, obtaining three putative statements involving these spaces and the
stabilizers of integrable structures, one of which must be true if there exist integrable
structures.

The rational homotopy type of the space of almost

complex structures

An almost complex structure on R?" is a linear endomorphism .J : R?® — R?" such that

J? = —id, and such a J endows R?" with the structure of a complex vector space, where

—

GL(2n,R) acts on almost complex structures on R?" by conjugation. This action is

transitive and its stabilizer is GL(n,C). Therefore, the space of almost complex structures

on R?" can be identified with GL(2n,R)/GL(2n,C) (see page 116 of [KN96]).
An almost complex structure on a manifold is a cross-section of the bundle associ-

ated to the space of almost complex structures on each tangent space, i.e. of the bundle
GL(2n,R)/GL(n,C) — J(M) — M, where J(M) denotes the bundle of linear frames over

M modulo GL(n,C) (see page 113 in [KN96]).

We consider the special case of the six—sphere,

GL(2n7R)/GL(n’ (C) N 3(56)
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Firstly, from elementary obstruction theory, we know that the space of cross-sections is non-
empty and has two components (given orientation, the standard almost complex structures
given by octonion multiplication provides a family of such a cross-section).

We replace GL(6,R)/GL(3,C) by SO(6)/U(3), as they are homotopy equivalent (see
Remark 1.3). Since the space of almost complex structures on R® fibers over S° with fibers
being the space of almost complex structures on R®, we can replace J(S¢) by SO(8)/U(4).

The T-construction (suggested by Sullivan on page 314 of [Sull77]), providing a rational
homotopy model of the space of sections I', works as follows:

Given a fibration F — E 2 B, we consider the pairs b* ® f, where b* is a linear basis
vector of the differential graded coalgebra that is the dual of the (finite type) model B of
the base and f is a cdga generator of a (finite rank) model A(V') of the fiber. The degree
of the pair b* ® f is defined to be |f| — |b]. We mod out the free algebra generated by those
b* ® f pairs by the ideal generated by pairs that have a negative degree and cocycles in
degree zero. That way, we obtain a connected free cdga denoted by T'.

Haefliger shows in [Haef82] that there is a unique differential we can put on this free
cdga that makes the evaluation map ev: B® A(V) - B®T', a map of cdga’s:

dr(b* @ f) := £0b* @ f + b* @ ev(df),

where B® A(V') models the total space FE of the fibration, 9b* is the transpose of dg and the
b* ® ev(df) term is obtained by taking the differential of f in the the total space and then
using the coalgebra structure of B* to evaluate them at B to reduce the term to a product
of the generators of I'.

The generators of I' (with positive degrees) in the S® case are 13 ® x5 (with degree 2),
15 ® y7 (with degree 7) and w§ ® y7 (with degree 1). (The indices indicate the degrees of
the generators in their respective algebras.)

A(15,we, 211) is a model of S® of finite type with dg(1) = dg(we) = 0 and d(211) = wd.

A(1p,x9,y7) is a model of CP2, which is diffeomorphic to SO(6)/U(3) and it has finite
rank linearized cohomology.

The differential of 13 ® x5 = 0. To find the differential of 1} ® y7 and w§ ® y7, we need
to figure out what dy; is. The crucial part of the computation is to show that the fibration
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is not a product fibration and that follows from the fact that S 0(8)/U( 4) is Hermitian

symmetric (see page 518 in [Hel76]) and hence a Kahler manifold.

Therefore, it should have a closed 2-form whose sixth power is nonzero. The only closed
2-form in our model is x5. That means x5 # 0 and therefore 0 # ¢ € R in dy; = x5 + crows.
Then dr(w§ ® y7) = (15 ® z2) and we end up with one cohomology class represented by
(1%, y7) as claimed.

This shows that the space of almost complex structures has the de Rham homotopy type
of 87 (or RP7, which is Q-equivalent to S7).

Remark 1.1. Our considered space of sections I' is nilpotent since the fiber is simply con-
nected and the base is a finite complex [M87], and hence we are in the setting of [Sull77]



where information obtained from (minimal) models directly corresponds to geometric infor-
mation.

Hence we have the following:

Theorem 1.2. The space I' of almost complex structures on S° (inducing a given orienta-
tion) is nilpotent and a minimal model is given by (A(yr),dyr = 0).

Remark 1.3. One can consider the spaces of smooth or continuous sections of the relevant
GL(6,R)/GL(3,C) or SO(6)/U(3) bundles (corresponding to smooth or continuous almost
complex structures); we note that all of these spaces are weakly homotopy equivalent via
the natural inclusions. First of all, that the inclusion of the space of smooth sections of the
SO(6)/U(3) bundle into the space of its continuous sections is a weak homotopy equivalence
follows from classical smooth approximation arguments (see [St51, 1.6.7], and [Ki20, The-
orem 1.2] for a definitive modern treatment). To observe that the inclusion of continuous
sections of the SO(6)/U(3) bundle into the continuous sections of the GL(6,R)/GL(3,C)
bundle is a weak homotopy equivalence, we work simplicially and use the naturality of the
Moore—Postnikov decomposition of fibrations and the description of the weak homotopy
type of the space of sections given in [Haef82, p.611].

Now we note that all of these spaces have the homotopy type of CW complexes, so
they are in fact all homotopy equivalent. Indeed, from the proof of Proposition 2.3 and the
statement of [Haef82, Proposition p.611] we see that the spaces of continuous sections has
the homotopy type of a CW complex. For the spaces of smooth sections we can appeal to
results of Palais (see for ex. [duP76, p.301]).

Let us now consider the subspace of almost complex structures on S® provided by the
octonions, and its relation to the space I'.

Thinking of S¢ = {p?+1 = 0} as the unit sphere in the space of imaginary octonions, we
have the standard almost complex structure given by jp(v) = pv, where on the right-hand
side we have multiplication of octonions. Indeed, since any R—subalgebra of the octonions
generated by two elements is associative, we have .J,(J,(v)) = p(pv) = (p*)v = —v. Further-
more, with respect to the standard inner product on Q = R® we have {p,pv) = (1,v) = 0
since left multiplication by p is an orthogonal transformation, and v is imaginary. We also
have (pv,1) = —(v,p) = 0, and hence pv is imaginary and orthogonal to p, i.e. it lies in the
tangent space T),56.

Now notice that SO(7) acts on the space of almost complex structures by (AJ),(v) =
A7 Jap(Av) for an A € SO(7) and J almost complex structure; AJ induces the same
orientation on S® as J does. The stabilizer of J under this action consists of those A €
SO(7) such that A=1((Ap)(Av)) = pv, i.e. A(pv) = (Ap)(Av) for all orthogonal pairs of
unit octonions p,v. This is enough to conclude that A is an R-algebra automorphism of
the octonions, i.e. an element of Ga. So, the orbit of J under the action of SO(7) is
homeomorphic to RP”.

On the other hand, for each unit octonion u € S7, we have the conjugation = — uza.
Conjugation preserves the space of imaginary octonions; indeed, for an imaginary p we have
(upu, 1) = {pu, i) = (p, 1) = 0, and so we have a map S” — SO(7) which factors through the
action of 41 to produce a map RP” — SO(7). The composite map RP” — SO(7)/Go = RP”
is not a homeomorphism. Indeed, by a result of Brandt (see [CoSm03, Theorem 8.7.14 on
page 98]), conjugation by a unit octonion u is an algebra automorphism if and only if u is a
sixth root of unity. The solution to u® = 1 consists of v = 1 and the two 6-spheres parallel
to the imaginary 7-plane at heights j:% on the real axis. The upper 6-sphere is the solution



to 1 —u+u? = 0, and the lower 6-sphere the solution to 1 + u + u? = 0; the translation
u — u — 1 maps the upper sphere to the lower one. This whole solution set gets sent to a
point in the orbit SO(7)/Gy = RP”.

Proposition 1.4. The inclusion SO(7)/Gy — T of the SO(7)-orbit of J,(v) = pv into the
space of all almost complex structures, is an isomorphism on rational homotopy groups.

Proof. Consider the evaluation map (SO(7)/G2) x.S% — SO(8)/U(4). In [CalGlu93], Calabi
and Gluck describe this map upon isometrically identifying SO(8)/U(4) with the Grassman-
nian Gr*(2,8) of oriented real 2-planes in R%. A fixed J € SO(7)/G2 = RP” sends S to
the sub-Grassmannian of two—planes containing a fixed line in R®; the space of such lines
is precisely parametrized by the RP7 of considered almost complex structures. From this
description, using Ehresmann’s lemma and 71 GrT(2,8) = 0, we see that the evaluation map
is a locally trivial fibration with fiber S* (parametrized by the space of lines with a choice
of orientation in a given oriented 2—plane).

We will now describe this fibration in terms of rational homotopy minimal models. To do
so, first we record the minimal model of Gr*(2,8) = SO(8)/U(4). By A we will denote the
free graded—commutative algebra on a set of generators, or, as will be clear from context, a
minimal model of a given space.

Lemma 1.5. The minimal model ASO(8)/U(4) is given by
(A(z2,76,y7,911), dyr = x% — T2x6, dy11 = 93(23)
The degrees of the generators are denoted by their subscripts.

Proof. This follows from our earlier discussion in the proof of Theorem 1.2, and a rescaling
of the generators. O

Now we see that in the fibration S* — SO(7)/G2 x S® — Gr™(2,8), the degree 1 gen-
erator of AS' must map to x5 under the differential, giving the model (A(xg,y7,y11), dre =
0,dy; = 0,dy;y = x2) for SO(7)/G2 x S¢ = RP” x S (which is rationally equivalent to
S7 x §6). In particular, the degree 7 generator y7 of SO(8)/U(4) pulls back to the degree
7 generator of SO(7)/G3 x S% by the evaluation. Since this evaluation map factors through
the evaluation T' x S — SO(8)/U(4) via the map SO(7)/G2 x S® — T x S% given by
the inclusion and identity, we see that the degree 7 generator of AI' must pull back to the
degree 7 generator of SO(7)/Gs. Therefore SO(7)/G2 — T is an isomorphism on rational
homotopy groups.

O

2 On the integral homotopy type

We will now record some topological information on the space of (orientation—compatible)
almost complex structures on S%; recall that the inclusion of metric-compatible almost com-
plex structures into all almost complex structures is a weak homotopy equivalence (from
here on let us fix the standard round metric on S% inherited from its ambient Euclidean
space O = R®).

Proposition 2.1. The fundamental group of the space of almost complex structures on S°
has order two.



Proof. First of all, the space of orientation—compatible orthogonal almost complex structures
on S% can be identified with the space of sections I' of the projectivized bundle P$Jr of
positive spinors (see [LawMicl6] Proposition IV.9.8 and Remark IV.9.12); the complex
bundle § ™ is of rank four, and so the fiber of the projectivized bundle is CP3.

We will use the following result of Crabb and Sutherland:

Theorem 2.2 (CS84, Proposition 2.7 and Theorem 2.12). Let X be an oriented closed
connected 2n—manifold and & a complex rank n + 1 bundle over X. Denote by N& the
space of sections of the projective bundle P& which lift to sections of &; this is a non-empty
connected space. Then w1 (NE) is a central extension

0= Z/c,(§)[X] = m(NE) - HY(X;Z) — 0.

In our situation of X = S% and ¢ = $+, notice that N¢ coincides with our space of
sections T, as H?(S%;Z) = 0 and so every section of P$Jr lifts to a section of $+. Therefore,
to determine 71 (I") we need only determine c3(P$ +). To this end, we will use that the total
space of our CP? = SO(6)/U(3) bundle over S is homotopy equivalent to SO(8)/U(4) (the
space of orientation—compatible orthogonal complex structures on the vector space R®). The
cohomology ring H*(SO(8)/U(4);Z) is thus generated, as an algebra over the pullback of
H*(S%Z) by the projection SO(8)/U(4) 2, 56, by a single element « in degree 2, subject
only to the relation

ot +aPprer(§7) + aPprea($7) + apes($7) + prea($T) = 0,

i.e.
ol +apte(87) = 0.

By the calculation of the cohomology ring in [Mas61, p.563], this now implies that p*cs(§ +)
is (up to sign) twice the degree six generator of H*(SO(8)/U(4);Z). Since SO(8)/U(4) £ §6
admits a section, this further implies c3(¢) is (up to sign) twice the fundamental cohomology
class of S. Applying the theorem of Crabb and Sutherland, we conclude that 7 (T") =
Z7/2. O

Now one might be led to believe that the space of almost complex structures I' has
the homotopy type of SO(7)/G2 = RP", given that the rational homotopy types and
fundamental groups agree. However, a more careful analysis shows that this is not the case.

Proposition 2.3. The inclusion SO(7)/Gs — T is not a weak homotopy equivalence.

Proof. We will consider the Postnikov-like system for the space of sections I" induced by the
Moore-Postnikov system for SO(8)/U(4) — S, as in [Haef82, p. 611] (see [Span89, Section
8.3] for an account of Moore—Postnikov systems). First, consider the Moore—Postnikov
system for SO(8)/U(4) — S%, where the Eilenberg—Maclane spaces fibered in at each stage
correspond to the homotopy groups of the fiber CP3:



S0(8)/U(4)

K(Z/2,8) —> B
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We obtain an induced decomposition of the space I', where the fibers are now the spaces
of unbased maps (with the compact—open topology) from S°¢ to the corresponding fiber of
the above Moore—Postnikov system. Choosing a section s € I', we denote by I'; the space
of sections of E; £ X in the component of ¢;s, where ¢; is the map SO(8)/U(4) — E;:

r

;
|

K(2/2,8)%° — T3

|

K(Z,7)%° — T,

|

I

By aresult of Thom (see [Haef82]), for a finite-type space X, there is a homotopy equivalence

K(G,m)X ~ ﬁK(Hm*i(X; G),1).
1=0

In the case of X = 8%, we have
K(G,m)s6 ~ K(G,m) x K(G,m —6),

where we take K (G, 1) ~ {*} if 7 is negative.

Since H3(S%;Z) is trivial, E; is homotopy equivalent to the product S x K(Z,2), and
so 'y ~ K(Z,2). As we saw earlier, 71(I') = Z/2, which informs us that the nontrivial
homotopy groups of I'y are 7 (I'y) = Z/2 and 77(T'y) = Z. Then we see that mo(T'3) = Za,
and since all subsequent fibers in the tower are at least 2—connected, we have mo(T') = Z/2.

We can similarly unambiguously determine some further homotopy groups.
O



3 A trichotomy of consequences of holomorphic charts

The action of SO(7) on the orthogonal almost complex structures is the restriction of
the much larger group Diff+(56) of orientation-preserving diffeomorphisms acting on all
almost complex structures. For any almost complex structure J and orientation-preserving
diffeomorphism J we have

(@)p(v) = & Ty(p) (D).

Denote the subspace of I' consisting of integrable complex structures by C'; note that the
action of Diff T (S°) restricts to C. Restricting to the connected component of the identity
Diff;q(S°), we have the folllowing conditional statement. It is an immediate consequence
of the properties of the Borel construction; each of the three possibilities can hopefully be
analyzed further geometrically. Recall that for a group G acting on a space X, the Borel
construction X /G is the quotient of X x FG by the diagonal action of G (we refer the
reader to [Hsiang, III.1] for properties of the Borel construction).

Proposition 3.1. Suppose S admits holomorphic charts. Then at least one of the following
statements is true:

(1) The quotient C/ Diff;q(S®) is connected, has degree-wise finite dimensional rational
cohomology, and has an infinite number of nonzero Betti numbers.

(2) Some complex structure on S has an infinite group of holomorphic automorphisms.

(3) The Borel quotients T J Diff;q(S®) and C) Diffiq(S®) do not have the same Betti num-
bers.

Proof. First, we observe the following:

Lemma 3.2. The Borel quotient I' | Diff;q(S®) has degree-wise finite dimensional rational
cohomology, and has an infinite number of non-zero Betti numbers.

Proof. Consider the fibration I' — T'j/ Diffiq(S%) — B Diff;q(S°) associated to the Borel
construction, and note that the base space is simply connected. As a consequence of a
result of Kupers [Kup19, Corollary 5.4(iii)], B Diff;q(S®) has degree-wise finite dimensional
rational cohomology, and since I is rationally S7, is follows from the Serre spectral sequence
that '/ Diffiq(S®) has degree-wise finite dimensional rational cohomology.

The map BSO(7) — BDiffiq(S%) induced by the inclusion is an injection on rational
homology, since BSO — BSTOP is a rational equivalence (see [MadMil79, Chapter 10]);
indeed, this implies BSO(7) — BSTOP is an injection on rational homology (since the
rational cohomology of BSO(7) is generated by the stable classes pi,p2,p3), and this map
factors through B Diff;4(S%). Again, from the Serre spectral sequence for the fibration, since
H*(B Diff;4(5%); Q) contains at least two free polynomial generators (namely p? and p), we
see that H*(T'// Diff;q(S%); Q) contains a free polynomial algebra on at least one generator
in degree 8. O

Now suppose statements (2) and (3) are false. Since T' is connected, it follows that
'/ Diff;4(S®) is connected and so by the assumption on (3), C/Diff;q(S°®) is connected.
let us show that the naive quotient C/ Diffiq(S®) has an infinite number of non-zero Betti
numbers.



Consider the Leray spectral sequence associated to the natural projection €'/ Diff;q(S¢) —
C/ Diff;4(S9); the stalk over the orbit [J] of a point J € C in the coefficient sheaf is isomor-
phic to the rational cohomology of the classifying space of the stabilizer of J in Diff;q(S°).
By the assumption on (2), each of these is trivial. By our assumption on (3) and the above
lemma, C/ Diff;q(S%) has infinite dimensional rational cohomology that is degree-wise finite
dimensional, and so the spectral sequence tells us that so does C'/ Diff;q(S) (see e.g. [Bri9s,
Remark 1.2]).
O

Remark 3.3. Note that the argument shows that we can upgrade (2) in the statement above
to say that for some complex structure, the classifying space of the group of holomorphic
automorphisms has some non-vanishing rational cohomology in positive degree. For any
putative complex structure on S, the group of holomorphic automorphisms is a complex Lie
group of dimension at most two, and this group cannot have an open orbit on S¢ [HKPO0O];
if the connected component of the identity of this group is not abelian, then this connected
component must be the universal cover of the complex affine group Aff(C) [Bru99]. Note
that the validity of (3) would mean there is no Diffiq(S®)-equivariant deformation retract of
T" onto C. The existence of an equivariant deformation retract and the rational acyclicity of
the classifying spaces of all holomorphic automorphism groups would imply that the space
C/ Diffiq(S), though locally finite-dimensional by Kodaira—Spencer and Kuranishi theory
[Kur62], would be globally infinite-dimensional (see [LeB17] for examples of such behavior).

Remark 3.4. Due to Cerf we know that Diff (S®) has 14 connected components (enumer-
ated by half of the group of homotopy 7-spheres). We can show that the Borel quotient
'/ Diff (S%) has infinite-dimensional rational cohomology as well, as follows. Consider the
fibration I' — '/ Diff 7 (S®) — BDiff"(S°). from the Borel construction. Consider the in-
duced map on universal covers (which are finite covers) of the latter two spaces. (Note, our
spaces might not admit universal covers a priori. Since all of our desired conclusions will be
about homotopy or cohomology, we can replace a considered space by a weakly homotopy
equivalent CW-complex when necessary.) Since I' has finite fundamental group, so does
the homotopy fiber F' of this map on universal covers, by the four lemma. Note that the
universal cover of B Diff " (S9) is B Diff;q(S6).

F —— T/ Diff *(S%) —— B Diff;4(S5%)

| | |

I —— I'/ Diff " (S%) —— BDiff " (S%)

Since F' has the same rational higher homotopy groups as I', the rational cohomology of F’
is that of a seven—sphere (since its universal cover, a finite cover, is rationally a seven—sphere).

Now from the spectral sequence for the upper fibration we see that '/ Diff 7 (S9) has infinite-
dimensional cohomology; let us argue that there is an infinite dimensional subspace of
invariants under the deck transformations, and so I'/ Diff (S%) will have infinite dimensional
cohomology.

First of all, the fundamental group of I'/ Diff " (S%) is either cyclic or a direct sum of
two cyclic groups (recall that 71 (I') = Z/2). We look at the degree 12 vector space of the
rational cohomology of the universal cover: we can split it into a sum of two vector spaces
— the first one consisting of infinite order elements, and the second consisting of finite order



elements. Now, by [Kupl19, Corollary C|, B Diff(S®) is of finite type, so these two vector
spaces are finite dimensional. Taking sufficiently high powers of the first vector space we
may thus assume that the action of the fundamental group leaves a polynomial algebra on
some number of generators (all of the same even degree) invariant as a set. There is at least
one such generator, namely the appropriate power of p3. Now if the fundamental group
is cyclic, upon passing to complex coefficients, this polynomial algebra splits into a sum
of invariant polynomial algebras each generated by one element; If the fundamental group
is the direct sum of two cyclic groups, then since the actions of each summand commute,
each summand induces an action on the invariants of the other, and so again we are in the
previous situation. Now we see that there is an infinite-dimensional invariant subspace in
each of these singly generated polynomial algebras, since a finite-order automorphism of
C is a root of unity of bounded order, so a sufficiently high power of any element will be
invariant.

Notice that, due to [Kup19, Corollary C], we have that the rational cohomology of both
'/ Diff (S%) and T'// Diff;4(S%) are degree—wise finite dimensional.
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