TOPOLOGY – ON THE EXTENSION OF THE STRUCTURE GROUP OF A FIBER SPACE.

A NOTE (*) BY MR. ANDRÉ HAEFLIGER, PRESENTED BY MR. ARNAUD DENJOY.

ABSTRACT. The problem of the existence of an extension of a fiber space relative to an extension of structure groups is reduced to the problem of the existence of a section in an associated fiber space; we are thus led to an obstruction which is explicitly determined in some particular cases.

Let E(B,G) and E'(B,H) be two principal fiber spaces with topological structure groups G and H, and the same base B. We say that E' is an extension of E if there exists a representation φ from E' to E which projects to the identity on E; such a representation determines a homomorphism φ from E' to E which projects to the identity on E; such a representation determines a homomorphism φ from E' to E which projects to the identity on E' is an extension (which will be said to be associated to φ). Conversely, given a fiber space E(E,G) and a homomorphism φ from E' to E' to E' is an extension (which will be said to be associated to φ). Conversely, given a fiber space E(E,G) and a homomorphism φ from E' to E' the E' to E'

In what follows, we will only consider groups G for which there exists a universal fiber space EG with base BG, and fiber spaces whose base is a cellular complex. We will further assume that φ determines on H a fibered structure with base G.

The method used here is based on the following remark made by A. Borel and J.P. Serre (3): the homomorphism φ determines a homotopy class of maps ρ from B_H to B_G , and we can choose B_H , B_G , and ρ (which are defined up to homotopy) so that B_H is a fiber space with basis B_G , projection ρ , and fiber B_N , where N is the kernel of the homomorphism ρ . Indeed, the quotient E_H/N of E_H by the equivalence relation defined by the action of N is none other than B_N ; we can then construct the fibered space associated with E_G of fiber E_H/N on which G acts naturally; it has the same homotopy type as B_N and its projection is identified with ρ .

The fiber space E(B,G) is determined by a map f from B to B_G ; for there to exist an extension of E associated with ρ , it is necessary and sufficient that f admit a lift $\overline{f}: B \to B_H$ relative to ρ (that is to say, $\rho \overline{f} = f$) or, which amounts to the same thing, that the fiber space induced by f from $B_H(B_6, B_N)$ has a section. Two lifts define equivalent extensions if and only if they are homotopic.

We now turn to the study of some special cases.

1. H is connected and N is a discrete subgroup of H. -N is then abelian and H is a covering of G with respect to φ . The classifying space B_N has the same homotopy type as an Eilenberg–MacLane complex K(N,1); let $\alpha \in H^2(B_G,N)$ be the first obstruction to constructing a section of the fiber space $\rho: B_H \to B_G$. The map $f: B \to B_G$ admits a lift relative to ρ if and only if $f^*(\alpha) = 0$, where f^* is the homomorphism $H^2(B_G,N) \to H^2(B,N)$ induced by f. If $H^1(B,N) = 0$, two lifts of f are always homotopic, and all extensions are equivalent.

The covering $\varphi \colon H \to G$ is determined by a homomorphism ψ from the fundamental group π of G to N. The group $\operatorname{Hom}(\pi, N)$ is identified with $H^1(G, N)$ [resp. with $H^2(B_G, N)$] and ψ corresponds to a class $\omega \in H^1(G, N)$ called the fundamental class of the covering [resp. it corresponds to α]. We then have the

Proposition 1. – Let $\varphi \colon H \to G$ be a connected covering of a topological group G, and N the kernel of φ ; for a fiber space E(B,G) to admit an extension associated to φ , it is necessary and sufficient

¹A map of vector bundles

²There is a typo here in the original paper; instead of E'(B,G) as written in the paper, it should be E'(B,H) as written above.

that a certain characteristic class belonging to $H^2(B, N)$ vanishes (2); this class is the image under the transgression in E(B, G) of the fundamental class $\omega \in H^1(G, N)$ of the covering $H \to G$.

Corollary 1. – To be able to extend the structure group of a fiber space E(B, SO(n)) to Spin(n), it is necessary and sufficient that the Stiefel-Whitney class $w^2 \in H^2(B, \mathbb{Z}_2)$ is zero.

As a consequence, for example, one cannot globally define spinors on the complex projective plane.

- **Corollary 2.** To be able to extend the structure group U(n) of a fiber space E(B, U(n)) to its universal covering [resp. to a covering with m sheets], it is necessary and sufficient that the Chern class $c^2 \in H^2(B, \mathbb{Z})$ [resp. c^2 reduced mod m] is zero.
- **2.** H is a compact connected Lie group. The extension H of G by N is determined by a class of homomorphisms of the fundamental group π of G to the center of N (4); we can always choose a homomorphism ψ in this class such that the image $\psi(\pi)$ is a finite subgroup \tilde{N} of N. There is a covering \tilde{G} of G associated to ψ , and \tilde{G} is identified with a subgroup of H; if we can extend the structure group G of E(B,G) to \tilde{G} , we can also extend it to H by the inclusion of G in H, and proposition 1 gives

Proposition 2. – The vanishing of a certain characteristic class $\alpha \in H^2(B, \tilde{N})$ is a necessary and sufficient condition for there to exist an extension of E(B, G) associated to φ .

If N is connected and abelian, it is a torus T^m (a product of m circles); B_N therefore has the homotopy type of a $K(Z^m,2)$, where Z^m denotes the direct sum of m free cyclic groups. The extension is possible if and only if an obstruction class $\beta \in H^3(B,Z^m)$ is zero. We can show that it is equal, up to sign, to $\delta \alpha$, where δ denotes the connecting homomorphism of the exact sequence in cohomology of B associated to the exact sequence of coefficients $0 \to \pi_1(T^m) \to \pi_1(T^m/\tilde{N}) \to \tilde{N} \to 0$.

Note that if H is a connected Lie group, we can reduce to case 2 by considering the maximal compact of H.

- (*) Session of 30 July 1955.
- (1) C. Ehresmann, Colloque de Topologie, Bruxelles, 1950, p. 51.
- (2) Cf. the article (1) and J. Frenckel, Comptes rendus, 240, 1955, p.2368; P. Dedecker, Colloque de Topologie, Strasbourg, 1955; A. Grothendieck, A general theory of fiber spaces with structure sheaf, University of Kansas, 1955.
- (3) Amer. J. Math., 75, 1953, p. 410-412.
- (4) A. Shapiro, Ann. Math., 50, 1949, p. 581-586.