THE EXISTENCE OF (STABLE) ALMOST COMPLEX STRUCTURES ON LOW-DIMENSIONAL MANIFOLDS

Let us consider the obstruction theory in determining whether an even-dimensional oriented manifold $M^{2 n}$ admits an almost complex structure (inducing the given orientation). A choice of almost complex structure J is equivalent to a reduction of the structure group of the tangent bundle of the manifold from $S O(2 n)$ to $U(n)$, which is equivalent to a section of the associated $S O(2 n) / U(n)$ bundle over M. So, the obstructions to finding a section (i.e. an almost complex structure) are in $H^{*}\left(M, \pi_{*-1}(S O(2 n) / U(n))\right.$), and the obstructions to uniqueness are in $H^{*}\left(M, \pi_{*}(S O(2 n) / U(n))\right.$.

In dimensions 2,4 , and 6 , these spaces $S O(2 n) / U(n)$ have very explicit descriptions.
Dimension 2. The space $S O(2) / U(1)$ is a point, and so every oriented 2-manifold has a (homotopically unique) almost complex structure.

Dimension 4. The space $S O(4) / U(2)$ is diffeomorphic to S^{2}. The obstructions to the existence of an almost complex structure in this situation are in $H^{3}\left(M, \pi_{2}\left(S^{2}\right)\right)=$ $H^{3}(M, \mathbb{Z})$ and $H^{4}\left(M, \pi_{3}\left(S^{2}\right)\right)=H^{4}(M, \mathbb{Z})$, A theorem of Wu tells us that these obstructions are precisely the third integral Stiefel-Whitney class $W_{3} \in H^{3}(M, \mathbb{Z})$, which is made zero by choosing an integral lift $c \in H^{2}(M, \mathbb{Z})$ of $w_{2}(T M) \in H^{2}\left(M, \mathbb{Z}_{2}\right)$ (which will be the first Chern class $c_{1}(M, J)$ of the almost complex structure obtained if the next obstruction vanishes) followed by the obstruction $c^{2}-3 \sigma(M)-2 \chi(M) \in H^{4}(M, \mathbb{Z})$ depending on the chosen integral lift. Here σ and χ denote the signature and Euler characteristic, respectively. The necessity of these obstructions vanishing follows from

$$
3 \cdot \sigma(M)=p_{1}(T M)=c_{1}(M, J)^{2}-2 c_{2}(M, J)=c_{1}(M, J)^{2}-\chi(M)
$$

which holds for any almost complex structure J on $T M$. Here we are identifying $H^{4}(M, \mathbb{Z})=\mathbb{Z}$ via integration over the fundamental cycle, and we are using the Hirzebruch signature formula $p_{1}=3 \sigma$ along with the fact that the top Chern class of any almost complex structure on $T M$ evaluates to the Euler characteristic.

Remark. The spaces $S O(2 n) / U(n)$ fiber over each other in a nice way. Think of $J(2 n)=S O(2 n) / U(n)$ as the space of almost complex structures on $\mathbb{R}^{2 n}$. Fix a unit vector e in $\mathbb{R}^{2 n}$. An almost complex structure J on $\mathbb{R}^{2 n}$ must take e to a unit vector in the plane $\mathbb{R}^{2 n-1}$ orthogonal to e. So, $J(e)$ must be something in the unit sphere $S^{2 n-2}$. Once that is chosen, any choice of J on the $2 n-2-$ plane orthogonal to e and $J(e)$ will give an almost complex structure on the total space $\mathbb{R}^{2 n}$. So, $J(2 n-2)$ fibers over $S^{2 n-2}$, and the total space of this fibration is $J(2 n)$. That is, we have the fibration

$$
S O(2 n-2) / U(n-1) \rightarrow S O(2 n) / U(n) \rightarrow S^{2 n-2}
$$

In the case of $n=3$, we have a fibration $S^{2} \rightarrow S O(6) / U(3) \rightarrow S^{4}$. This is the same fibration as the one considered above, $S^{2} \rightarrow Z \rightarrow S^{4}$, where sections of the second map correspond to almost complex structures on S^{4}.

Dimension 6. In dimension 6 , the space $S O(6) / U(3)$ turns out to be $\mathbb{C P}^{3}$. The homotopy groups of $\mathbb{C P}^{3}$ relevant to doing obstruction theory on a six-manifold are,

THE EXISTENCE OF (STABLE) ALMOST COMPLEX STRUCTURES ON LOW-DIMENSIONAL MANIFOLDS
starting at π_{1},

$$
0, \mathbb{Z}, 0,0,0
$$

This can be seen from the fibration $S^{1} \rightarrow S^{7} \rightarrow \mathbb{C P}^{3}$. So, the only obstruction to the existence of a J on M^{6} is in $H^{3}(M, \mathbb{Z})$. It is equal, again, to the third integral Stiefel-Whitney class W_{3} (see Massey [2], Remark 1). Peculiar to dimension 6 is that the requirements for an almost complex structure are less demanding than in dimension 4. This is related to the fact that $4 k$-manifolds have a signature, which imposes an additional relation on its Pontryagin classes and hence on the Chern classes of any almost complex structure.

The almost complex structures on M^{6} are in bijective correspondence with integral lifts of w_{2}. A given integral lift will be the first Chern class $c_{1}(M, J)$ of the corresponding almost complex structure J. We can then determine $c_{2}(M, J)$ from $p_{1}(T M)=c_{1}(M, J)^{2}-2 c_{2}(M, J)$, so

$$
c_{2}(M, J)=\frac{1}{2} \cdot\left(c_{1}(M, J)^{2}-p_{1}(T M)\right)
$$

The top Chern class $c_{3}(M, J)$ is pre-determined by the requirement that it be the Euler class.

Dimension 8. The space $S O(8) / U(4)$ does not turn out to have an even simpler description, but its homotopy groups relevant to obstruction theory on an 8 -manifold are known. In general, the first $2 n-2$ homotopy groups of $S O(2 n) / U(n)$ are stable, i.e. they coincide with those of the stable space $S O / U$, which has homotopy groups corresponding to a shift of those found in $B S O$,

$$
\pi_{*} S O / U=0, \mathbb{Z}, 0,0,0, \mathbb{Z}, \mathbb{Z}_{2}, \mathbb{Z}_{2}, 0, \mathbb{Z}, 0,0,0, \mathbb{Z}, \mathbb{Z}_{2}, \mathbb{Z}_{2}, 0, \mathbb{Z}, 0,0,0, \mathbb{Z}, \ldots
$$

The first unstable group of $S O(2 n) / U(n)$, that is $\pi_{2 n-1} S O(2 n) / U(n)$, depends on $n \bmod$ 4. In dimension 8 , we have $n=0 \bmod 4$, and $\pi_{7}(S O(8) / U(4))=\mathbb{Z} \oplus \mathbb{Z}_{2}$ (see [2]).

In summary, the relevant homotopy groups of $S O(8) / U(4)$ are

$$
\pi_{*} S O(8) / U(4)=0, \mathbb{Z}, 0,0,0, \mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_{2}
$$

The first obstruction to the existence of an almost complex structure on an 8 -manifold M is, as before, $W_{3} \in H^{3}(M, \mathbb{Z})$. Next up, we have an obstruction in $H^{7}(M, \mathbb{Z})$. In ([2], Remark 1) it is observed that this obstruction is in fact the seventh integral StiefelWhitney class W_{7} of the tangent bundle. In ([3], Theorem 2) it is shown that the second-to-last integral Stiefel-Whitney class of an orientable even-dimensional manifold always vanishes (i.e. the third-to-last Stiefel-Whitney class has an integral lift), so this obstruction vanishes. The next and final obstruction is some class $o \in H^{8}\left(M, \mathbb{Z} \oplus \mathbb{Z}_{2}\right)=$ $H^{8}(M, \mathbb{Z}) \oplus H^{8}\left(M, \mathbb{Z}_{2}\right)$. This obstruction class splits as the sum $o=o_{s}+o_{u}$ of a stable obstruction class $o_{2} \in H^{8}\left(M, \mathbb{Z}_{2}\right)$ and an unstable class $o_{u} \in H^{8}(M, \mathbb{Z})$.

Remark. The stable obstruction class is what we would meet if we were just looking for a stable almost complex structure. (Since the pair $(S O / U, S O(2 n) / U(n))$ is $(2 n-2)-$ connected, the obstructions to the existence of an almost complex structure coincide with those for the existence of an almost complex structure, up to but not including the top skeleton.)

In [4] we find the following descriptions of o_{s} and o_{u} (relying on results of Massey and Heaps),

$$
\begin{aligned}
& o_{s}=r_{2}\left(\chi(M)+\frac{1}{2} c_{1} c_{3}\right), \\
& o_{u}=\frac{1}{4}\left(2 \chi(M)-2 c_{1} c_{3}+c_{2}^{2}-p_{2}(T M)\right) .
\end{aligned}
$$

Here c_{1}, c_{2}, c_{3} denote the Chern classes of the almost complex structure that has been built up to (including) the 7 -skeleton of M (assuming the previous obstruction vanished), and r_{2} denotes the mod 2 reduction map.

Example. Let us see which of the connected sums of quaternionic projective planes $\mathbb{H}^{2}{ }^{\# k} \# \overline{\mathbb{H P}^{2}}{ }^{\# l}$ admit almost complex structures (here $\overline{\mathbb{H P}}^{2}$ denotes $\mathbb{H P}^{2}$ with the reversed orientation). First, consider just $\mathbb{H}^{2} \mathbb{P}^{2}$. The first potentially non-trivial obstruction to finding an almost complex structure is in $H^{4}\left(\mathbb{H}^{2}, \pi_{3}(S O(8) / U(4))\right)$. However, $\pi_{3}(S O(8) / U(4))=0$, so there is no obstruction. Note that this gives us the existence of an almost complex structure on the 4 -skeleton of $\mathbb{H}^{2} \mathbb{P}^{2}$ (which is S^{4}). The obstructions to its uniqueness lie in $H^{4}\left(\mathbb{H}^{2}, \pi_{4}(S O(8) / U(4))\right)$, which is also trivial. So, there is a unique (up to homotopy, as always) almost complex structure on $\left.T \mathbb{H} \mathbb{P}^{2}\right|_{S^{4}}$. The next obstruction we meet is the o at the top, $o \in H^{8}\left(\mathbb{H}^{2}, \mathbb{Z} \oplus \mathbb{Z}_{2}\right)$, which splits as $o=o_{s}+o_{u}$. By the above formulas, $o_{s}=\chi\left(\mathbb{H} \mathbb{P}^{2}\right) \bmod 2=1$, since $c_{1} \in H^{2}\left(\mathbb{H}_{\mathbb{P}^{2}}, \mathbb{Z}\right)=0$ and $c_{3} \in H^{6}\left(\mathbb{H} \mathbb{P}^{2}, \mathbb{Z}\right)=0$. We also have

$$
o_{u}=\frac{1}{4}\left(6+c_{2}^{2}-p_{2}\left(T \mathbb{H} \mathbb{P}^{2}\right)\right)
$$

The total Pontryagin class of $\mathbb{H} \mathbb{P}^{2}$ is given by

$$
p\left(T \mathbb{H} \mathbb{P}^{2}\right)=\frac{(1+a)^{6}}{1+4 a}=1+2 a+7 a^{2}
$$

where $a \in H^{4}\left(\mathbb{H}_{\mathbb{P}^{2}}, \mathbb{Z}\right)$ is a generator such that $\int_{\mathbb{H P}^{2}} a^{2}=1$. From the relation $p_{1}\left(T \mathbb{H} \mathbb{P}^{2}\right)=$ $c_{1}^{2}-2 c_{2}$ for any contending almost complex structure, and $c_{1} \in H^{2}\left(\mathbb{H} \mathbb{P}^{2}, \mathbb{Z}\right)=0$, we conclude $2 a=-2 c_{2}$. This is an equation in $H^{4}\left(\mathbb{H}^{2}, \mathbb{Z}\right)=\mathbb{Z}$, so we have $c_{2}=-a$. Therefore,

$$
o_{u}=\frac{1}{4}\left(6+a^{2}-7 a^{2}\right),
$$

and so (since we are identifying a top cohomology class with its integral over $\mathbb{H}^{2} \mathbb{P}^{2}$),

$$
4 \cdot o_{u}=6-6 \cdot \int_{\mathbb{H P}^{2}} a^{2}=0
$$

that is, $o_{u}=0$. So our top obstruction is $o=\left(o_{u}, o_{s}\right)=(0,1) \in \mathbb{Z} \oplus \mathbb{Z}_{2}$. In particular, $\mathbb{H} \mathbb{P}^{2}$ does not admit an almost complex structure.

Now we consider how the top obstruction to an almost complex structure behaves under the operation of connect sum. Suppose we have two 8 -manifolds M and N, and almost complex structures J_{M}, J_{N} on their respective 7 -skeleta. Then there is a canonical almost complex structure J on the 7 -skeleton of $M \# N$ such that the obstruction to extending it over all of $M \# N$ is given by

$$
o(M \# N, J)=o\left(M, J_{M}\right)+o\left(N, J_{N}\right)-o\left(S^{8}\right)
$$

where the terms involved are the mentioned obstructions, and $o\left(S^{8}\right)$ is the (only) obstruction to having an almost complex structure on S^{8}, which we interpret as the sphere obtained by collapsing both M and N in $M \# N$ to points.

We can also consider the situation of reversing orientation. If we have an almost complex structure J on the 7 -skeleton of an 8 -manifold M, then there is canonical almost complex structure \bar{J} on the 7 -skeleton of \bar{M}. The obstructions to extending over the respective 8 -skeleta are related by

$$
o(\bar{M}, \bar{J})=-o(M, J)+\chi(M) o\left(S^{8}\right)
$$

To apply these two results, all that remains is to compute the term $o\left(S^{8}\right)$. The first obstruction to an almost complex structure on S^{8} is the one at the top, which is $o\left(S^{8}\right)$, and which splits as $o_{s}+o_{u}$. The above formulas for these terms give us

$$
\begin{aligned}
& o_{s}=\chi\left(S^{8}\right) \bmod 2=0, \\
& o_{u}=\frac{1}{4}\left(4-p_{2}\left(T S^{8}\right)\right) .
\end{aligned}
$$

The Chern class terms c_{1}, c_{2}, c_{3} vanish due to the absence of cohomology in the appropriate degrees. To compute $p_{2}\left(T S^{8}\right)$, we can use the Hirzebruch signature formula in this degree, which tells us $\sigma\left(S^{8}\right)=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right)$. Since $p_{1} \in H^{4}\left(S^{8}, \mathbb{Z}\right)=0$ and $\sigma\left(S^{8}\right)=0$, we conclude $p_{2}=0$. Therefore $o_{u}=1$, and so $o=\left(o_{s}, o_{u}\right)=(1,0)$ for the 8 -sphere.

These two results (on connected sum and reversing orientation) are discussed in [1]. From the second result, we see that the only obstruction to putting an almost complex structure on $\overline{\mathbb{H P}^{2}}$ is given by

$$
o\left(\overline{\mathbb{H} \mathbb{P}^{2}}\right)=-(0,1)+3 \cdot(1,0)=(3,1) \in \mathbb{Z} \oplus \mathbb{Z}_{2}
$$

Combining all of this, we have that the top (and only) obstruction to an almost complex structure on ${\mathbb{H} \mathbb{P}^{2} \# k}_{\# \overline{\mathbb{H P}}^{\# l} \text { is given by }}$

$$
\begin{aligned}
k \cdot o\left(\mathbb{H}_{\mathbb{P}^{2}}\right)+l \cdot o\left(\overline{\mathbb{H} \mathbb{P}^{2}}\right)-(k+l-1) \cdot o\left(S^{8}\right) & =k \cdot(0,1)+l \cdot(3,1)-(k+l-1) \cdot(1,0) \\
& =(2 l-k+1, k+l) .
\end{aligned}
$$

In order for this to be zero in $\mathbb{Z} \oplus \mathbb{Z}_{2}$, we conclude that k and l have to have the same parity, and $k=2 l+1$. In particular, k and l both have to be odd. So, $\mathbb{H P}^{2} \# k \# \overline{H P}^{2} \# l$ has an almost complex structure if and only if $(k, l)=(4 n+3,2 n+1)$ for some $n \geq 0$.

References

[1] Kahn, Peter J. "Obstructions to extending almost X-structures." Illinois Journal of Mathematics 13, no. 2 (1969): 336-357.
[2] Massey, W. S. "Obstructions to the existence of almost complex structures." Bulletin of the American Mathematical Society 67, no. 6 (1961): 559-564.
[3] Massey, W. S. "On the Stiefel-Whitney Classes of a Manifold. II." Proceedings of the American Mathematical Society 13, no. 6 (1962): 938-42.
[4] Müller, S., and H. Geiges. "Almost complex structures on 8-manifolds." Enseignement Mathematique 46 , no. $1 / 2$ (2000): 95-108.

