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Abstract. We consider the question of which quaternionic projective spaces have
the rational homotopy type of a closed almost complex manifold, partially generaliz-
ing a theorem of Hirzebruch. We further comment on the case of rational octonionic
projective spaces.

1. Introduction

In the 1950’s, Hirzebruch [Hi54] proved that the quaternionic projective spaces HPn,
with their standard smooth structures, do not admit almost complex structures for
n ̸= 2, 3. Together with Milnor, this was later generalized [HiICM58] in Hirzebruch’s
1958 ICM address to the statement that no HPn with its standard smooth stucture,
for n ≥ 2, admits a stable almost complex structure. Massey [Ma62] subsequently gave
an independent proof of the latter (see the Remark at the end of loc. cit.).

In this note we will partially generalize the first statement, regarding the non-
existence of almost complex structures, to closed manifolds with the rational coho-
mology ring of HPn. We emphasize that we do not fix an orientation on our manifold;
by saying that an orientable closed manifold does not admit an almost complex struc-
ture, we mean that it does not admit one which is compatible with either possible
orientation.

More concretely, our generalization is the following:

Theorem. If a closed smooth 4n–manifold M with H∗(M ;Q) ∼= H∗(HPn;Q) admits
an almost complex structure, then n ≡ 0, 3, 8, or 11 mod 12.

Using Sullivan’s closed manifold realization result for rational homotopy types [Sull77,
Theorem 13.2] adapted to almost complex manifolds [M22, Theorem 2.4], one can see
that there is indeed a simply connected closed almost complex manifold with the ra-
tional cohomology of HP3 [M22, Theorem 7.3]. In this note we will also extend the
latter and exhibit a one-parameter family of complex cobordism classes all represented
by a rational HP3. We will comment on the realization problem for an almost complex
rational HP8; this and the further realization problems for n = 11, 12, 15, . . . are at the
moment far too computationally complex for us to hope to solve.

To place our investigation into context, it is known that a closed almost complex
manifold with sum of rational Betti numbers equal to three has the rational coho-
mology of CP2 [Hu21, Theorem 1.2], [Su22, Corollary 14]. That is, if Q[x]/(x3) is
the rational cohomology of some closed almost complex manifold, then deg(x) = 2.
We contrast this with the case of general closed orientable smooth manifolds, where
there are in fact simply connected manifolds with this rational cohomology in dimen-
sions 4, 8, 16, 32, 128, 256 and possibly beyond (though there are less than ten further
possibilities up to dimension one million) [KeSu19, Theorem A], [Zag17]. Note, the di-
mensions 4, 8, 16 comprise a complete list for integral cohomology Z[x]/(x3) by Adams’
resolution of the Hopf invariant one problem.
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Furthermore, Q[x]/(x3) is realized by a closed almost complex manifold precisely
when deg(x) = 2, 6. It is natural then to consider the two-parameter family of algebras
Q[x]/(xn), with varying deg(x), and ask for which deg(x) and n this is realized as the
rational cohomology algebra of a closed almost complex manifold.

We focus on deg(x) = 4 and comment on the case of deg(x) = 8, i.e. almost complex
“rational quaternionic and octonionic projective spaces”. It is well known that a closed
manifold with integral cohomology Z[x]/(xn) and deg(x) = 8 exists only in dimension
8 and 16, but this conclusion does not extend to the rational setting. Indeed, from
Sullivan’s realization theorem [Sull77, Theorem 13.2], one sees that Q[x]/(xn) with
deg(x) = 8 is the cohomology of a closed simply connected manifold for even n (i.e.
“rationally, odd octonionic projective spaces OP3,OP5, . . . exist”). Namely, since the
middle degree rational cohomology is trivial, one can set all the Pontryagin classes to be
trivial in the construction of loc. cit. Furthermore, by [KeSu19, Corollary 20], rational
OP4,OP16,OP32 exist as well; generally it is unknown for which n they exist. We show
that most of these cannot admit almost complex structures:

Proposition. If a closed smooth 8n–manifold M with H∗(M ;Q) ∼= Q[x]/(xn+1), where
deg(x) = 8, admits an almost complex structure, then

n ≡ 0, 80, 95, 144, 224, 239, 320, 335, 464, 479, 495, 560, 575, 639, 704, or 719 mod 720.
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2. Stong congruences and almost complex realization

We recall the rational homotopy type realization theorem for simply connected closed
(stably) almost complex manifolds [M22, Theorem 2.4]; for simplicity we only include
the statement for dimensions divisible by four.

Theorem 2.1. Let X be a formally n–dimensional simply connected rational space
of finite type satisfying rational Poincaré duality, n ≡ 0 mod 4 and n ≥ 8, and let
[X] ∈ Hn(X;Q) be a non-zero element. Furthermore, let ci ∈ H2i(X;Q), 1 ≤ i ≤

⌊
n
2

⌋
be cohomology classes. Then there is a closed simply connected stably almost complex

manifold M and a rational homotopy equivalence M
f−→ X such that f∗[M ] = [X] and

ci(TM) = f∗(ci) if the following hold:

• the quadratic form on H
n
2 (X;Q) given by q(α, β) = ⟨αβ, [X]⟩ is equivalent over

Q to one of the form
∑

i±y2i ,
• if we define pi = (−1)i

∑
j(−1)jcjci−j, then ⟨L(p1, . . . , pn/4), [X]⟩ = σ(X),

where L is Hirzebruch’s L–polynomial,
• the numbers ⟨ci1ci2 · · · cir , [X]⟩, for any partition {i1, . . . , ir} of n/2, are integers
that satisfy the following Stong congruences [St65, Theorem 1]: denoting by ei
the elementary symmetric polynomials in the variables exj −1, where the xj are
given by formally writing 1 + c1 + c2 + · · · =

∏
j(1 + xj), we have

⟨z · td(X), [X]⟩ ∈ Z for every z ∈ Z[e1, e2, . . .].
Here td(X) denotes the Todd polynomial evaluated on c1, c2, . . ..
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• if c1 = 0 and n ≡ 4 mod 8, the numbers ⟨pi1pi2 · · · pir , [X]⟩ are integers that sat-
isfy a further set of Stong congruences [St66, p.134], for any partition {1, . . . , ir}
of n/4: denoting by epi the elementary symmetric polynomials in the variables
exj + e−xj − 2, where the xj are given by formally writing 1 + p1 + p2 + · · · =∏

j(1 + x2j ), we require

⟨z · Â(X), [X]⟩ ∈ 2Z for every z ∈ Z[ep1, e
p
2, . . .].

Here Â(X) denotes the Â polynomial evaluated on p1, p2, . . .. Note that the
above are conditions on c1, c2, . . ., as they determine p1, p2, . . ..

If ⟨cn/2, [X]⟩ equals the Euler characteristic of X, and the conditions above are sat-
isfied, then the stable almost complex structure on the obtained manifold M is induced
by an almost complex structure.

Example 2.2. We compute the Stong congruences for a four–dimensional closed stably
almost complex manifold. In this case, the Chern classes c1 = x1+x2, c2 = x1x2 are the

elementary symmetric polynomials in the Chern roots x1, x2, while ex1 − 1 = x1 +
x2
1
2 ,

ex2 − 1 = x2 +
x2
2
2 up to higher order terms. We find that, up to higher order terms,

e1 = (ex1 − 1) + (ex2 − 1) = x1 + x2 +
x2
1+x2

2
2 = c1 +

c21−2c2
2 ,

e2 = (ex1 − 1)(ex2 − 1) = x1x2 = c2,

e21 = c21.

Again, by degree reasons, the relevant part of the Todd polynomial is

td(X) = 1 +
c1
2

+
c21 + c2
12

.

Clearly, ⟨z · td(X), [X]⟩ ∈ Z for every z ∈ Z[e1, e2] if and only if

⟨z · td(X), [X]⟩ ∈ Z for z = 1, e1, e2, e
2
1.

Pairing with the fundamental class, we have:

⟨1 · (1 + c1
2 +

c21+c2
12 ), [X]⟩ = ⟨c21,[X]⟩+⟨c2,[X]⟩

12 ∈ Z

⟨(c1 +
c21−2c2

2 )(1 + c1
2 +

c21+c2
12 ), [X]⟩ = ⟨c21, [X]⟩ − ⟨c2, [X]⟩ ∈ Z

⟨c2 · (1 + c1
2 +

c21+c2
12 ), [X]⟩ = ⟨c2, [X]⟩ ∈ Z

⟨c21 · (1 + c1
2 +

c21+c2
12 ), [X]⟩ = ⟨c21, [X]⟩ ∈ Z

Abusing the pairing notation and denoting ⟨cI , [X]⟩ simply by cI , we have the Stong
congruences:

c21+c2
12 ∈ Z, c21 − c2 ∈ Z, c2 ∈ Z, c21 ∈ Z.

The Stong congruences generally account for the Chern numbers being integers; beyond
this in dimension four we therefore only have the integrality of the Todd genus c21+c2 ∈
12Z.

Remark 2.3. In general, the integrality of the Chern numbers and Todd genus will not
imply all the Stong congruences. Already in dimension six we have the congruences
c1c2
24 ,

c31
2 ,

c3
2 ∈ Z, where the first is the integrality of the Todd genus. Further, even

in the case of compact complex manifolds it is not true that the integrality of the
holomorphic Euler characteristics of the sheaves of holomorphic k–forms recover all the
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Stong congruences. For example, in complex dimension three, the holomorphic Euler
characteristics only give integrality of c1c2

24 (for 0–forms or 3–forms) and c3
2 − c1c2

24 (for
1–forms or 2–forms) by Hirzebruch–Riemann–Roch.

Example 2.4. The Stong congruences described in Theorem 2.1, which can be inter-
preted as all the universal relations holding among Chern numbers of stably almost
complex manifolds obtained from the Atiyah–Singer index theorem, allow one to rule
out the existence of almost complex structures on manifolds with certain rational coho-
mology algebras. We consider Q[x]/(x2) and Q[x]/(x3) with deg(x) = 4 as an example.
For the former, we can avoid invoking the specific value of the signature (which is not
determined, beyond being an integer, by the Stong congruences alone); for the latter
however we cannot avoid the signature, as there are closed almost complex eight–
manifolds with cohomology concentrated in middle degree (e.g. see [M22, Proposition
7.1]).

A closed manifoldM with the rational cohomology of HP1, i.e. of S4 (e.g., other than
S4, connected sums of the unoriented Grassmannian of real two–planes in R4), does not
admit an almost complex structure. Namely, if it did, we would have

∫
M c21−2c2 = −4.

On the other hand,
∫
M c21 + c2 is divisible by 12, and hence

∫
M c21 − 2c2 is divisible by

3, a contradiction.
We remark that, by contrast, every orientable four–manifold admits a stable almost

complex structure, as the only obstruction is the integral Stiefel–Whitney class W3,
which is known to vanish in this case.

Example 2.5. Moving up in dimension, there is no closed stably almost complex
manifold with the rational cohomology of HP2. Namely, since c1 and c3 would have to
be torsion classes, we see that the following congruences must hold (here and from now
on we tacitly assume the Chern classes to be paired with the fundamental class):

3c22 − c4 ≡ 0 mod 720,

c4 ≡ 0 mod 6.

Adding 15c4 to the first congruence, we have that 3c22 + 14c4 ≡ 0 mod 90. However,
3c22 + 14c4 is 45 times the signature, by expressing Hirzebruch’s L-genus in terms of
Chern classes. We conclude that the signature must be even, a contradiction.

Example 2.6. In the direction of existence results, we note how the Hirzebruch–Milnor
theorem of non-existence of stable almost complex structures on HPn, for n ≥ 2, can
be immediately seen not to extend to the rational setting. Namely, for odd n ≥ 3,
setting all ci = 0 in Theorem 2.1 one obtains a stable almost complex manifold with
the rational homotopy type of HPn, as the first two points are trivially satisfied since
H2n(HPn;Q) = 0 in this case.

3. Lemmas on ei

For a closed almost complex 2n-dimensional manifold consider its Chern classes
c1, . . . , cn being the elementary symmetric polynomials in the Chern roots x1, . . . , xn,
and e1, . . . , en being the elementary symmetric polynomials in the variables ex1 −
1, . . . , exn − 1. Then we have the following observations/computations:

• We have explicitly computed en−k for k = 0, 1, 2, 3, 4 in terms of c1, . . . , cn and
n (from this point onwards we assume that n > 2k).

• In general, when k is a fixed number, the coefficients in front of the top-degree
products of c1, . . . , cn are polynomials in the variable n (with rational coeffi-
cients).
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• Denote by en,i the expression of en in terms of c1, . . . , cn where n, as a symbol,
is replaced with n − i. For example, en = en,0 = cn, and en,1 = cn−1. Then it
holds en−k = [terms of degree n] + en−k−1,1.

• Therefore, when computing en−k recursively, starting with k = 0, at each step
it is sufficient to compute only the top degree terms in en−k, which is a purely
combinatorical problem formulated in terms of partitions of the number n.

For example,

en = cn,

en−1 = cn−1 +
c1cn−1 − ncn

2
,

en−2 = cn−2 +
c1cn−2 − (n− 1)cn−1

2
+

1

6
c21cn−2 −

1

12
cn−2c2 −

(3n− 4)

12
c1cn−1 +

n(3n− 5)

24
cn,

en−4 =

(
1

384
n4 − 5

192
n3 +

97

1152
n2 − 251

2880
n

)
cn

+

(
−1

48
n3 +

1

6
n2 − 19

48
n+

1

4

)
cn−1 +

(
1

8
n2 − 17

24
n+

11

12

)
cn−2 +

(
−1

2
n+

3

2

)
cn−3

+ cn−4 +

(
1

720

)
c4cn−4 +− 1

240
c3cn−3 +

(
− 1

96
n2 +

17

288
n− 13

180

)
c2cn−2

+

(
1

24
n− 1

8

)
c2cn−3 +− 1

12
c2cn−4 +

1

360
c22cn−4

+

(
− 1

96
n3 +

3

32
n2 − 37

144
n+

1

5

)
c1cn−1 +

(
(
1

16
n2 − 19

48
n+

7

12

)
c1cn−2

+

(
−1

4
n+

5

6

)
c1cn−3 +

1

2
c1cn−4 −

1

720
c1c3cn−4 +

(
1

48
n− 47

720

)
c1c2cn−3

− 1

24
c1c2cn−4 +

(
1

48
n2 − 5

36
n+

13

60

)
c21cn−2 +

(
− 1

12
n+

7

24

)
c21cn−3 +

1

6
c21cn−4

− 1

80
c21c2cn−4 +

(
− 1

48
n+

3

40

)
c31cn−3 +

1

24
c31cn−4 +

1

120
c41cn−4.

We sketch the computation of en−2. First, we introduce more notation. Fix n. Order
all symmetric polynomials in x1, . . . , xn of degree n lexicographically in the following
way. Each such polynomial is determined by a sequence of exponents, for example,
cn is given by [1, . . . , 1] with n ones. We then order these sequences lexicographically
(from lower to higher) in the obvious way, setting sn0 := [1, . . . , 1], sn1 := [2, 1, . . . , 1, 0],
sn2 := [2, 2, . . . , 0, 0], sn3 := [3, 1, . . . , 0, 0], and so on.

By definition, en−2 is the second elementary symmetric polynomial in ex1−1, . . . , exn−
1. Since terms of degree higher than n vanish, it will consist only of monomials in
x1, . . . , xn of degrees n − 2, n − 1, and n. Thus, en−2 is a sum of three homogeneous
symmetric polynomials of degrees n− 2, n− 1, and n, respectively. By inspecting, for
example, the first product (ex1 − 1) . . . (exn−2 − 1), it becomes clear that

en−2 = sn−2
0 +

sn−1
1

2
+

sn2
4

+
sn3
6
.

Expressing each sn−k
i in terms of c1, . . . , cn yields the result.
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Moreover, if one starts expressing the (lexicographically) highest term sn3 first by
writing sn3 = c3cn−3 − . . . , one sees that the dots in the expression consist of the (lexi-
cographically) lower terms than sn3 , namely, sn2 , s

n
1 , and sn0 . In other words, recursion

is possible.

4. Rational quaternionic projective spaces

Remark 4.1. When restricting to simply connected spaces, being rationally homo-
topy equivalent to HPn is equivalent to having rational cohomology isomorphic to
H∗(HPn;Q).1 Namely, take a space X with the latter property. A minimal model for
H∗(HPn;Q) is given by

(
Λ(x, y); dx = 0, dy = xn+1

)
with deg(x) = 4, deg(y) = 4n+ 3.

We can construct a map from this minimal model to APL(X) by sending x to a repre-
sentative of a generator α of H∗(X;Q), and sending y to any element whose differential
in APL is αn+1.

Theorem 4.2. Let M be a closed 4n–dimensional almost complex manifold with H2(M ;Q) =
0. The Euler characteristic χ(M) satisfies

12 | n · χ(M).

Proof. The Stong congruence en−2 · td ∈ Z and ⟨cn, [M ]⟩ = χ(M) yield the result. □

Corollary 4.3. If a closed smooth 4n–manifold M with H∗(M ;Q) ∼= H∗(HPn;Q)
admits an almost complex structure, then n ≡ 0, 3, 8, or 11 mod 12.

Proof. Since χ(HPn) = n+ 1, we have

12 | n(n+ 1),

and the statement follows immediately. □

Theorem 4.4. Let M be a closed 8n–dimensional almost complex manifold with

H2(M ;Q) = H4(M ;Q) = 0.

The Euler characteristic χ(M) satisfies

720 | n(480n3 − 1200n2 + 970n− 251)χ(M).

Proof. The Stong congruence en−4 · td ∈ Z and ⟨cn, [M ]⟩ = χ(M) yield the result. □

Corollary 4.5. If a closed smooth 8n–manifold M with H∗(M ;Q) ∼= Q[x]/(xn+1),
where deg(x) = 8, admits an almost complex structure, then

n ≡ 0, 80, 95, 144, 224, 239, 320, 335, 464, 479, 495, 560, 575, 639, 704, 719 mod 720.

or, equivalently,

n ≡ 0, 15 mod 16, n ≡ 0, 2, 5, 8 mod 9, and n ≡ 0, 4 mod 5.

1That is, the rational algebra H∗(HPn;Q) is intrinsically formal, i.e. there is only one rational
homotopy type realizing it.
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4.1. A family of almost complex rational HP3’s. In [M22, Theorem 7.3] it was
shown that there is a closed almost complex manifold with the rational homotopy type
of HP3. Since the rational cohomology ring of HP3 is Q[x]/(x4), a choice of Chern
classes c2, c4, c6 corresponds to a choice of scalars a, b, c ∈ Q with c2 = ax, c4 = bx2,
c6 = cx3. The choice of the fundamental class [X] on our rational homotopy type
corresponds to choosing a rational number d ̸= 0 with ⟨x3, [X]⟩ = d. As in loc. cit. we
fix d = 1. The Stong congruences and signature condition then come down to requiring
that a ∈ Z, b ∈ Q (that a must be an integer follows from ⟨c22, [X]⟩ ∈ Z, and c must be
χ(HP3) = 4) satisfy the following Diophantine system:

−a3 + 4ab ∈ 24Z,
ab+ 8 ∈ 1920Z,

5a3 − 36ab = 248.

We observe that a = −2, b = 4 as used in loc. cit. is in fact the only integer solution.

Indeed, if b is an integer, expressing it from the last equation yields that 5a3−248
36a is an

integer. Hence, a is divisible by 2 and writing a = 2â yields again that 5â3−31
9â is an

integer, which implies that â divides 31, whence one concludes by direct check.
If, however, we do not require b to be an integer, there is an infinite family of

solutions, which we now describe. Again, because k := ab must be an integer, we
have a = 2â for some â. Writing k = 2k̂ and noting that by Fermat’s little theorem
(−â)3 ≡ −â mod 3, we have

−â+ k̂ ∈ 3Z,

k̂ + 4 ∈ 960Z,

5â3 − 9k̂ = 31.

Equivalently, we write â = 3n + 2, k̂ = 960l + 4, and (3n + 2)3 + 1 = 1728l. We are
thus reduced to the question of when (3n+2)3+1 = (3n+3)(9n2+9n+3) is divisible
by 1728, that is, when (n + 1)(3n2 + 3n + 1) is divisible by 192. As 192 = 3 · 26,
(3n2 + 3n + 1) is always coprime with 192. Therefore, all solutions are parametrized
by n = 192s − 1, where s is an arbitrary integer. Resubstituting now gives us the
parametrization of solutions

a = 1152s− 2, b =
105615360s2 + 960s− 4

576s− 1
.

Since ab = 211230720s2+1920s−8 is the Chern number c2c4, we have the following:

Corollary 4.6. There are infinitely many classes in the bordism group ΩU
12 represented

by manifolds with the rational homotopy type of HP3.

In fact, by construction [M22, Theorem 2.4] all of these manifolds represent classes
in ΩSU

12 ; they are simply connected with rationally vanishing c1, and hence c1 vanishes
integrally.

The next step would be to understand the situation for an arbitrary rational d ̸= 0,
which we will not pursue here. Considering rational Poincaré duality algebras equipped
with a choice of fundamental class, up to isomorphism that is compatible with the
fundamental class there are Q×/(Q×)3 equivalences classes.
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4.2. Towards an almost complex rational HP8. As in the section above, since
the rational cohomology ring of HP8 is Q[x]/(x9), a choice of Chern classes c2, . . . , c16
corresponds to a choice of scalars a2, . . . , a16 with ci = aix

2i.
There are 915 Stong congruences (with redundancies) that have to be satisfied. For

example, one of them is

162765c82 − 838020c62c4 + 1246002c42c
2
4 + 579586c52c6 − 534048c22c

3
4 − 1256864c32c4c6

−380686c42c8 + 31005c44 + 443426c2c
2
4c6 + 266117c22c

2
6 + 545341c22c4c8 + 227533c32c10

−69008c4c
2
6 − 70810c24c8 − 174311c2c6c8 − 180346c2c4c10 − 117033c22c12 + 16365c28

+32951c6c10 + 34345c4c12 + 46551c2c14 − 10851c16 ∈ 32011868528640000Z

At this point, we can neither prove nor disprove the existence of a solution in
a2, . . . , a16. However, in attempts of proving any of the latter we discovered the follow-
ing:

• One can treat the system of Stong congruences as a system of linear equations,
where the 22 occurring Chern numbers are treated as independent integer vari-
ables. By finding the m := lcm of moduli of all the congruences we obtain a
linear system over Z/mZ. By using the Smith normal form, one can parame-
trize the solution space of that system by 22 independent integer parameters.
Our result is that we know the parametrization on the level of Chern numbers.

• On the other hand, however, we have shown that none of the c2i (and thus a2i)
can be zero for a fixed solution. This means that if the solution in a2, . . . , a16
exists, it is highly non-trivial.
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