ON THE CHARACTERIZATION OF RATIONAL HOMOTOPY TYPES
AND CHERN CLASSES OF CLOSED ALMOST COMPLEX MANIFOLDS

ALEKSANDAR MILIVOJEVIC

ABSTRACT. We give an exposition of Sullivan’s theorem on realizing rational homotopy types
by closed smooth manifolds, including a discussion of the necessary rational homotopy and
surgery theory, adapted to the realization problem for almost complex manifolds: namely,
we give a characterization of the possible simply connected rational homotopy types, along
with a choice of rational Chern classes and fundamental class, realized by simply connected
closed almost complex manifolds in real dimensions six and greater. As a consequence,
beyond demonstrating that rational homotopy types of closed almost complex manifolds are
plenty, we observe that the realizability of a simply connected rational homotopy type by a
simply connected closed almost complex manifold depends only on its cohomology ring. We
conclude with some computations and examples.
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1. THE HOMOTOPY TYPES OF CLOSED MANIFOLDS: BACKGROUND AND HISTORY

In the 1930’s, Hassler Whitney’s pioneering work on manifolds, bundles, and cohomology
marked the birth of differential topology [Mich40]. In the same article giving the modern
definition of a smooth manifold [Wh36], Whitney showed how every manifold can be embed-
ded in Euclidean space. These embeddings naturally equip manifolds with normal bundles,
and Whitney early on saw the need for a general theory of vector bundles beyond the tan-
gent bundle [Wh35]. His investigation of the obstructions to linearly independent sections of
vector bundles, a problem concurrently considered on the tangent bundle by Eduard Stiefel
in his thesis [S35], initiated the study of characteristic classes.

It was known to Whitney that all vector bundles were pulled back from Grassmannians
with their tautological bundles. Lev S. Pontryagin [Po42] studied the homology of these
universal spaces, identifying the generators of the integral lattice in rational (co)homology
now known as Pontryagin classes. Shiing-Shen Chern conducted a similar study on complex

manifolds [Ch46], defining what became known as the Chern classes of the tangent bundle,
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using the Schubert cell decomposition of the complex Grassmannians; later Wu Wenjun
[Wub52] would generalize this notion in his thesis to arbitrary complex vector bundles .

Pontryagin observed that by considering maps of spheres into the one-point compactifi-
cation of the universal trivial bundle over a point, one can identify the homotopy groups
of spheres with equivalence classes of stably framed manifolds up to what is now known as
framed cobordism [Po38]. Later, René Thom [Th54] built on this construction and applied it
to all closed smooth manifolds, developing and employing transversality arguments to clas-
sify smooth manifolds up to cobordism by calculating the homotopy groups of the one-point
compactification of the universal bundle over the Grassmannian.

In the late 1950’s and early 1960’s, Michel Kervaire and John Milnor introduced surgery,
a procedure of removing from a manifold embedded spheres with trivial normal bundle,
and used it to determine the finite abelian groups of smooth structures on homotopy spheres
[KeMi63], in terms of Bernoulli numbers and homotopy groups of spheres, in dimensions 5 and
above. Andrew Wallace [Wa60] independently introduced surgery in the United Kingdom
under the name “constructive cobordisms”: applying a surgery to a manifold produces a
cobordism to the resulting manifold, and any cobordism can be realized by a finite number
of surgeries.

After Stephen Smale proved the generalized Poincaré conjecture in dimensions five and
higher by establishing the h—cobordism theorem [Sm62], the work of Kervaire and Milnor
could be formulated as classifying the smooth structures on piecewise-linear spheres S,
for any n > 1. Extending this work, Sergei Novikov in the Soviet Union addressed the
problem of classifying smooth structures on simply connected manifolds in dimensions 5 and
greater, in terms of vector bundles over their homotopy types and the homotopy groups of the
one-point compactification of their normal bundles when embedded in a high—dimensional
Euclidean space [No64]. William Browder [Br62] in the United States independently did the
same, along with characterizing in similar terms as [KeMi63] and [No64] which homotopy
types were realized by closed smooth manifolds in dimensions 5 and greater. This made
use of Spivak’s normal spherical fibration [Sp64] characterizing Poincaré duality spaces, a
notion earlier identified by Browder in his study of finite complexes admitting a continuous
multiplication with unit. Motivated by Hilbert’s 5" problem on characterizing Lie groups
as locally Euclidean locally compact groups [H02|, Browder asked if these complexes with a
unital multiplication were realized by smooth manifolds.

Dennis Sullivan in his thesis [Sul65] reformulated the stories of Kervaire-Milnor, Novikov,
and Browder without choosing the normal bundle, instead classifying all the simply connected
closed manifolds, piecewise—linear or smooth, in a homotopy type via obstruction theory. The
obstructions in the piecewise—linear theory lay in a calculable homotopy type with fourfold
periodic homotopy groups 0,%Zs,0,7%Z,0,7Z5,0,Z,.... The homotopy groups in the smooth
theory are still unknown, though the theory itself can be reduced to stable homotopy using
the Adams conjecture, provable using the Frobenius automorphism from algebraic geometry
(a possibility first voiced by Daniel Quillen [Q68]). Understanding these results and the
utility of localizing homotopy types motivated Sullivan’s 1970 “MIT notes” on localization,
periodicity, and Galois symmetry [Sul70] (see also [Sul74]).

Upon tensoring homotopy types and maps by the rationals, the piecewise-linear and
smooth obstruction theories become equivalent. The homotopy theory of rationalized simply
connected spaces was shown by Quillen to be encoded algebraically in differential graded
Lie algebras in his seminal “Rational Homotopy Theory” [Q69]. Motivated by this theory,
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and influenced by Whitney’s treatment of differential forms on arbitrary complexes [Wh57],
Sullivan described a theory of computable algebraic models for rational homotopy types in
terms of differential graded algebras of differential forms in his “Infinitesimal Computations
in Topology” [Sul77].

Here, we will give an exposition, with an emphasis on the basic surgery-theoretic tech-
niques, of the details and necessary theory to understand and prove a theorem formulated
in [Sul77], and accompanied by a sketch proof as an illustration of the developed techniques,
on the realization of simply connected rational homotopy types by closed smooth manifolds
[Sul7?, Theorem 13.2]. However, our account has the adapatation of this result to the re-
alization by closed almost compler manifolds as its ultimate focus, whose formulation and
proof, using the enclosed tools, was left to the reader [Sul77, Remark p.322]. We give a
characterization of the possible simply connected rational homotopy types realized by closed
simply connected almost complex manifolds in dimensions six and greater; in the process we
characterize those realized by closed simply connected stably almost complex in dimensions
five and greater.

In the last two sections we will observe some consequences of the main Theorem
and carry out some computations; beyond demonstrating that rational homotopy types of
almost complex manifolds are plenty, we observe that the realizability of a simply connected
rational homotopy type by a simply connected almost complex manifold depends only on
the cohomology ring. We contrast this with the case of rational homotopy types realized
by compact complex manifolds satisfying the 0-lemma (such as Kihler manifolds), where
all the higher multiplications in the associated C, structure on the cohomology necessarily
vanish; in this sense one can think of the rational homotopy types of 99-manifolds as the
free objects on their underlying cohomology algebra. In the almost complex case, for the
dimensions not excluded, no further restriction is placed on the higher operations in the
associated C, structure beyond the requirement that the cohomology algebra with its binary
multiplication satisfies Poincaré duality. One can wonder whether non-90 compact complex
manifolds generally lie somewhere strictly between these two extremes.

Acknowledgements. I would thank my PhD advisor Dennis Sullivan at Stony Brook Uni-
versity for suggesting the current project. I am indebted to Zhixu Su for her elaboration
of Sullivan’s smooth realization theorem concerning obtaining a degree one map of a mani-
fold to the space A considered later, along the lines of Barge’s proof of the theorem [Ba76l,
Théoreme 8.2.2] following Sullivan’s 1974 Orsay lectures, and for her clear formulation of the
result as given in [Suld], [Su09]; our exposition in Section 5 parallels hers, with the necessary
modifications made to adapt to the almost complex case, most importantly the passage to
BSU in case ¢; = 0 in order to circumvent fundamental group issues. The Macaulay2 pack-
age “SymmetricPolynomials” [M2] was of great help in calculations performed in Sections
6 and 7. I am grateful to the Max Planck Institute for Mathematics in Bonn, where the
final phases of this work were performed. I further thank the referee for numerous helpful
comments improving the exposition.

2. PRELIMINARIES ON ALMOST COMPLEX MANIFOLDS AND RATIONAL SPACES, AND
STATEMENT OF MAIN THEOREM

In this section we review the basic notions needed to state the main Theorem [2.41
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2.1. Almost complex and stably almost complex manifolds. An almost complex man-
ifold is a smooth manifold M equipped with a (smooth) endomorphism J of its tangent bun-
dle, such that JoJ = —Id. This endomorphism is called an almost complez structure on M.
In general we refer to such an endomorphism on a vector bundle E as a complex structure
on the vector bundle. An almost complex structure induces an orientation on M; we say an
oriented manifold is almost complex if it admits an almost complex structure inducing the
given orientation.

A stable almost complex structure on M is a complex structure on its stable tangent bundle,
i.e. on TM @ R” for some positive k, where R* denotes a trivial real k—plane bundle.

On a compact manifold M, isomorphism classes of complex vector bundles of rank n are in
bijective correspondence with homotopy classes of maps M — BU(n) to the classifying space
of the unitary group (or equivalently, to the classifying space BG L(n, C) of the general linear
group; the inclusion of groups U(n) < GL(n,C) induces a homotopy equivalence between
BU(n) and BGL(n,C)). A given complex vector bundle is obtained, up to isomorphism, by
pulling back the tautological n—plane bundle over BU(n).

The integral cohomology ring of BU(n) is a polynomial algebra on the Chern classes
1, Ca, . .. of the tautological bundle; pulling these back via the map classifying a given complex
vector bundle E gives the Chern classes ¢;(E) € H*(M;Z) of the bundle. If the vector bundle
in question is the tangent (or stable tangent) bundle of M, we often denote its Chern classes
by ¢;(M) for simplicity, and refer to them as the Chern classes of the (stably) almost complex
manifold. The map BU(n) — BU(n+ 1) classifying the sum of the tautological bundle over
BU(n) with a trivial complex line bundle induces an isomorphism on cohomology in degrees
< 2n, and the Chern classes ¢y, . .., ¢, of the tautological bundle over BU(n+ 1) pull back to
those of the tautological bundle over BU (n). Iterating this process, one is led to consider the
homotopy colimit BU of this sequence of maps. Homotopy classes of maps to BU correspond
to stable complex vector bundles up to equivalence.

We refer the reader to [MiSt] for details of the above, in particular for both concrete and
axiomatic treatments of Chern classes, which were originally introduced by Chern and are
the primary obstructions to the existence of tuples of linearly independent sections. We will
use that the top Chern class ¢,, of a complex n—plane is the Euler class of the underlying real
bundle, i.e. the primary (and only, over a 2n—dimensional cell complex) obstruction to the
existence of a section.

It is useful to consider (stably) almost complex manifolds up to complex cobordism, whereby
we say two closed stably almost complex manifolds M;, My (with their induced orientations)
of dimension n are complex cobordant if there is a stably almost complex manifold W whose
boundary is the disjoint union of M; and Ms, and the induced stable almost complex struc-
tures agree in an appropriate sense with those on M; and M. We refer the reader to the
definitive [St], and to [Pall] for a quick and precise introduction. Complex cobordism classes
form a graded ring under disjoint union and Cartesian product, denoted QY.

2.2. Chern numbers and congruences. On a closed (stably) almost complex manifold
M of real dimension 2n, one can consider the Chern numbers (c;,(M)c;,(M) - ¢; (M), [M]),
where 2iy + 2ig + - - - + 21, = 2n. Here [M] denotes the fundamental class of M in Hy,(M;Z),
and (—,—) denotes the pairing between cohomology and homology. For simplicity let us
denote by c¢;(M) the class ¢;, (M)c;,(M)---¢;., where I = {iy,is,...,4,} is a multi-index.
The Chern numbers are complex cobordism invariants, as can be seen from Stokes’ theorem



REALIZATION FOR ALMOST COMPLEX MANIFOLDS 5

after mapping the Chern classes into de Rham cohomology with complex coefficients and
representing them by differential forms.

The Chern numbers (¢;(M), [M]) of a closed stably almost complex manifold are integers,
which furthermore satisfy certain congruence conditions. Namely, consider the stable tangent
bundle as a complex vector bundle, which is classified by a map M % BU. We can consider
the element 7y, [M] € H.(BU;Q). Note that if M is complex cobordant to N via W, then
Tas[M] = Tn[N]. Indeed, 0 = 7. [0OW] = Tar[M] — 7« [N]. Thus we obtain a map from
complex cobordism QY to the rational homology of the classifying space H,(BU;Q). Stong
characterized the image of this map in the following way:

Theorem 2.1. (Stong, [St65a]) A class a € H.(BU;Q) is in the image of QU — H,(BU;Q)
if and only if (zTd(¢;), ) € Z for every z in the integer polynomial ring generated by the
elementary symmetric polynomials e; in the variables e*i — 1, where x; are the Chern roots of

the universal Chern class in BU (i.e. formally we have ¢ = [[,(1 + x;), where c is the total
Chern class in H*(BU;Z)).

Any considered class o will be of some finite degree and so all sums considered for the
elements z are finite. The term Td(c;) is the Todd genus, Td(c;) = 1+ % + C%;;C? +U2
Now the mentioned congruences among Chern numbers from above, which we will refer to
as the Stong congruences, follow from (c¢;(M),[M]) = (Ti;cr, [M]) = (c1, T [M]) = (c1, @).
Note that for degree reasons, this reduces to finitely many conditions. One can think of these
congruences as coming from the Atiyah-Singer index theorem; namely [, ch(E) Td(M) must
be an integer for every complex vector bundle £ — M.

Almost complex manifolds M with ¢;(M) = 0 admit a (further) lift of structure group to
the special unitary group SU(n). As in the case of U(n), we have a classifying space BSU (n)
for such vector bundles, and a corresponding cobordism ring Q2°Y. The integral cohomology
ring of BSU(n) is the polynomial ring on the Chern classes ¢, ¢3, ..., ¢, of the tautological
bundle over BSU (n).

If a given (stably) almost complex manifold M has ¢;(M) = 0 in integral cohomology, and
its dimension is congruent to 4 mod 8, then a further set of congruences holds among its
Chern numbers, according to Stong’s description of the image of the map Q%Y = H,(BSU; Q)
[St65Dh]. Before stating it, let us recall that real vector bundles E have integral characteristic
classes called Pontryagin classes p; € H*(M;Z), defined by p;(E) = (—1)ico;(F @ C). If E
is already a complex vector bundle, then we have the equality

1=pi(E) +pa(E) = = (1 =c1(E) +co(B) = )AL +c1(E) + co(B) 4+ - ).

Again we refer to [MiSt] for further discussion and details.
Now for the further Stong congruences, we have the following:

Theorem 2.2. (Stong, [St65b]) Let M be a stably almost complex manifold of (real) di-
mension congruent to 4 mod 8, with ¢;(M) = 0. Denoting by €¥ the elementary symmet-
ric polynomials in the variables e*/ + e~*7 — 2, where the x; are given by formally writing
L+ pr+po+---=[1;(1 +23), we have

(z- A(M),[M]) € 2Z for every z € Z[e?, éb, .. ].

Here A(M) denotes the A polynomial, A =1 — B s (Tpf —4po) + - - -
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Since one can express the Pontryagin classes in terms of Chern classes, these further con-
gruences are also conditions on cg, c3,.... Together with the previous congruences in Theo-
rem , this determines the image of Q%Y = H,(BSU; Q) [St65b, Theorem 1]. In dimensions
not congruent to 4 mod 8, the congruences in Theorem already describe the image of
QY 5 H,(BSU;Q). We refer the reader to Sections 6 and 7 for some explicit calculations
of these congruences.

2.3. Rational spaces and rationalization. We say a simply connected space is rational if
all of its reduced integer homology groups (or equivalently, homotopy groups) are isomorphic
as abelian groups to rational vector spaces. We will only consider finite type spaces, i.e.
spaces for which H;(X;Q) is finite-dimensional for every i.

A map between two simply connected spaces is a rational homotopy equivalence if it induces
an isomorphism on homology groups with rational coefficients (or equivalently, on the homo-
topy groups tensored with the rationals). Spaces X and Y are rationally homotopy equivalent
if there is a zig-zag of rational homotopy equivalences X <« 7 — Zy < --- «— Z, — Y
between them. Note that a rational homotopy equivalence between rational spaces is a
homotopy equivalence.

For every simply connected (or more generally, nilpotent) space X, there is a rational space

X and a rational homotopy equivalence X ER Xq; the space Xg is unique up to homotopy
equivalence; we call f a rationalization. To rationalize spheres, one takes the homotopy

colimit of the diagram S™ N N LN N .-+, i.e. one forms a sequence of cylinders
S™x [0, 1] and glues the appropriate ends via a degree k self-map of the sphere. The inclusion
of S™ as, say, the leftmost end is a rationalization.

O

Mébius band

FIGURE 2.1. A rational circle [GrMo81), Lemma 7.5]. Note how the circle represent-
ing the left end of the leftmost cylinder may be arbitrarily divided in the fundamental
group, by pushing it to the right an appropriate number of times (and multiplying
if necessary). For example, to divide by three we may push it two cylinders across
(seeing how to divide by six) and multiply by two. Hence the fundamental group of
this construction is Q. For higher dimensional spheres mapping in, note that by com-
pactness any map will land in a finite stage of the construction, which deformation
retracts onto a circle, and is hence nullhomotopic. Hence 7> = 0.
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To rationalize a nilpotent space (with the homotopy type of a cell complex), we note that
we can build the space inductively by starting with a wedge of spheres, and then repeatedly
taking the mapping cone of a map from a sphere into the previous stage. We can rationalize
the spheres involved, inducing a sequence of mapping cones whose final stage will be the
rationalization of our space.

Working with the rationalizations of spaces up to rational homotopy equivalence facilitates
computation, as such spaces can be faithfully encoded in nilpotent graded-commutative dif-
ferential algebras [Sul77]. Algebraic properties and constructions on these nilpotent algebras
correspond to geometric phenomena [Sul77, §11]. This is particularly effective when consid-
ering smooth manifolds, where this differential algebra capturing the rational homotopy type
of the space is, upon tensoring with the reals, a connected nilpotent replacement of the de
Rham algebra of forms [DGMS75l, Corollary 3.4].

A key property of closed manifolds that survives to their rationalizations is Poincaré duality
on the rational cohomology:

Definition 2.3. A (not necessarily rational) connected space X is said to satisfy rational
Poincaré duality if there is an index n such that H, (X;Q) = Q, and the pairing H*(X; Q) ®
H" *(X;Q) — Q given by a ® 8+ (af,[X]) is non-degenerate, where [X] is any non-zero
element in H,(X;Q). We call n the formal dimension of X. If a choice of [X] is fixed, we
refer to it as the fundamental class of X.

This pairing being non-degenerate is equivalent to the cap product [X]| N — being an
isomorphism H*(X;Q) — H,_1(X;Q) (see e.g. [Br72, Proposition 1.2.1]).

Though the Chern classes and Pontryagin classes of a stably almost complex manifold
lie in integral cohomology, one can of course consider their image in rational cohomology,
which we will also denote by ¢;(M) and p;(M). We refer to these as the rational Chern and
Pontryagin classes of the manifold.

2.4. The signature of closed smooth manifolds. On a closed manifold of dimension 4k,
or more generally a rational Poincaré duality space X of formal dimension 4k with a choice of
fundamental class, we have an induced symmetric bilinear form H?*(X: Q)® H*(X;Q) — Q.
One can represent this pairing by a symmetric matrix, and consider the number of positive
eigenvalues minus the number of negative eigenvalues. This integer is an invariant of the
rational Poincaré duality space with its choice of fundamental class, called its signature and
denoted o(X).

From work of Hirzebruch and Thom, the signature of a closed oriented manifold is an
oriented cobordism invariant which can be computed by evaluating a universal rational poly-
nomial in its Pontryagin classes, known as Hirzebruch’s L-genus (or L—polynomial). The
first few terms are given by 1+ B + 7171_;10% + ---. Recall that the rational Chern classes
of any stable almost complex structure on M determine the Pontryagin classes of M by
pi = (=1)"3°;(=1)cjeij. So, we may speak of the L-genus evaluated on Chern classes,
with the understanding that first the Pontryagin classes are to be formed.

On a closed 4k—manifold M, the pairing H**(M; Q)@ H*(M; Q) — Q is the rationalization
of a unimodular integral pairing on H™/?(M:;Z), which is a non-trivial condition. From the
theory of symmetric bilinear forms [MiHu73, §IV.2.6], this condition is equivalent to the
pairing on H?*(M; Q) being equivalent over Q to one of the form yi 4+ y3 + -+ y2 — y2,, —
-+ — g2, ie. there is a rational basis for which the corresponding matrix is diagonal with
only +1 on the diagonal.
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2.5. Statement of main theorem. We can now state our main result:

Theorem 2.4. Let X be a formally n—dimensional simply connected rational space of finite
type satisfying rational Poincaré duality, n > 5, and let [X] € H,(X;Q) be a non-zero
element. Furthermore, let ¢; € H*(X;Q), 1 < i < L%J be cohomology classes. Then we
have:

(1) Ifn is odd, there is a closed simply connected stably almost complex n—manifold M and

a rational homotopy equivalence M Iy X such that fo[M] = [X] and ¢;(TM) = f*(¢;).
(2) If n = 2 mod 4, then there is a closed simply connected stably almost complex manifold

M and a rational homotopy equivalence M Iy X such that fo[M] = [X] and ¢;(TM) =
f*(c:) if the numbers (c;, ¢y, - - - ¢;,., [X]) are integers that satisfy the Stong congruences
of a stably almost complex manifold for any partition {i1,...,i.} of n/2: that is,
denoting by e; the elementary symmetric polynomials in the variables e*i — 1, where
the x; are given by formally writing 1 + ¢ + c2 + - = [[;(1 + z;), we have

(z-Td(X), [X]) € Z for every z € Zley, ea, .. .].

Here Td(X) denotes the Todd polynomial evaluated on cy,ca, . . ..
(8) If n = 0 mod 4, then there is a closed simply connected stably almost complex manifold

M and a rational homotopy equivalence M Iy X such that fo[M] = [X] and ¢;(TM) =
F(e) if )

e the quadratic form on H2(X;Q) given by q(a, B) = (af, [X]) is equivalent over
Q to one of the form >, +y2,

o if we define pi = (—1)' > .(=1)¢jcij, then (L(p1, ..., Pnsa), [X]) = 0(X), where
L s Hirzebruch’s L—polynomial,

e the numbers (c; c;, -+ - ¢;,, [ X]) are integers that satisfy the Stong congruences of
a stably almost complex manifold described above,

e ifc; =0 and n = 4 mod 8, the numbers (p;, pi, - - - pi,, [X]) are integers that sat-
isfy a further set of Stong congruences: denoting by €% the elementary symmetric
polynomials in the variables e*i + e~ — 2, where the x; are given by formally
writing 1 +pr+p2 + - =[[;,(1 + x3), we require

(z- A(X),[X]) € 2Z for every z € Z[eb, éb, .. ].

Here A(X) denotes the A polynomial evaluated on py, po, . ... Note that the above
are conditions on cy,cs, ..., as they determine py,pa, . . ..

If n is even and (c, /2, [ X]) equals the Euler characteristic of X, and the conditions of (2)
or (3) are satisfied, then the stable almost complex structure on the obtained manifold M is
induced by an almost complex structure (in particular, the almost complex structure also has
f*(ci) as its Chern classes).

Remark 2.5. Notice that if additionally c; = 0 in any of the cases above, then the first Chern
class of the resulting (stably) almost complex manifold M wvanishes in integral cohomology,
since H*(M;Z) 1is torsion-free.
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3. NECESSARY CONDITIONS FOR REALIZATION BY A CLOSED ALMOST COMPLEX
MANIFOLD

3.1. The realization problem. We aim to describe the simply connected rational homo-
topy types realizable by closed almost complex manifolds, along with the rational Chern
classes they may carry. To be more precise, we make the following definition:

Definition 3.1. For a simply connected rational space X, we say a closed n—manifold M

realizes X if there is a rational homotopy equivalence M I x.

Note that the existence of such a map implies that X and M have isomorphic rational
cohomology rings, and so X satisfies rational Poincaré duality, with formal dimension n, and
furthermore comes with a preferred fundamental class f.[M]. If M is almost complex, then
X also carries a natural choice of rational “Chern classes” f*~'(c;(M)).

We state the realization problem, that Theorem addresses, as:

Question 3.2. Given a simply connected rational space X with prescribed elements ¢; €
H*(X;Q) and 0 # [X] € H,(X;Q), is there a closed almost complex manifold M and a

rational homotopy equivalence M Iy X such that fo[M] = [X] and f*(¢;) = ¢;(M)?

We choose to incorporate the fundamental class [X] € H,(X;Q) as part of the given data,
since this facilitates the calculation of the Chern numbers of the realizing manifold M by

{er(M), [M]) = (f*(cr), [M]) = (er, [[M]) = (er, [X]).

Note also that in the case of formal dimension n = 4k, the bilinear form on H?**(M;Q),
discussed in Section , is isometric to the one on H?*(X;Q)

3.2. Necessary conditions for realization. Let us now consider the implications on
(X, ¢;,[X]) in the case of a positive answer to Question [3.2}

(i) Since a closed manifold has finitely generated homology, we see that H,(X;Q) must
be finite dimensional.

(ii) X must satisfy rational Poincaré duality. Furthermore, the formal dimension n must
be even (as almost complex manifolds are even—dimensional).

(iii) Since the Chern numbers (c;(M ), [M]) of any realizing manifold will satisfy the Stong
congruences, so will the “Chern numbers” (c;(X), [X]).

(iv) If the formal dimension n is furthermore divisible by four, then the symmetric bilinear
form on H™?(X; Q) induced by Poincaré duality. This pairing on a realizing manifold
M is equivalent over Q to one of the form yi +y5 +--- +y2 —y2,, — - — y2 (see
Section [2.4)).

(v) Likewise, if the formal dimension n is divisible by four, the signature of the pairing on
H™?(X:;Q) must be equal to the L-genus evaluated on [X]. Indeed, for a realizing
manifold M, we would have o(M) = o(X) since the bilinear forms on H"/?(—; Q) are
isometric, and we would have

(Lprs - onja) [XT) = (Lprs -5 ya)s felM]) = (F L(prs -+ Poga), [M])
= (L(p1(M), ... pnja(M)), [M]) = o(M) = o(X).
(vi) We must have (¢,,/2(X), [X]) = x(X), where x(X) is the Euler characteristic. Indeed,

on a closed almost complex manifold of real dimension 2n, we have (¢, (M), [M]) =
X(M), and if M is rationally homotopy equivalent to X, then x (M) = x(X).
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3.3. Sufficiency of the conditions in high dimension: ingredients of the proof. We
will confirm that in formal dimensions n > 6 (i.e. n > 5 if we only want stably almost
complex manifolds), these necessary conditions are in fact sufficient. The proof proceeds in
two stages:

Stage 1 We form a simply connected space A with a rational homotopy equivalence A % X
to our rational space, such that there is a complex vector bundle £ on A whose Chern
classes are g*(¢;). Here ¢; denote the cohomology classes determined by (1 + ¢; +
o+ )(1+¢ + &+ ---) = 1. Note that for large enough i, we have ¢; = 0 for

degree reasons. We then find a closed manifold M and a map M Iy A such that
f«[M] = ¢g;'[X], and such that the stable normal bundle v of M is f*¢. By the stable
normal bundle we mean the normal bundle to M embedded in a large-dimensional
sphere; if the dimension of the sphere is large enough, any two embeddings are isotopic
and hence their normal bundles are isomorphic as real vector bundles. The stable
normal bundle of M then inherits a complex structure from &, giving M the structure
of a stably almost complex manifold. It is at this stage that make use of property
(iii) above, in conjunction with the Pontryagin—Thom construction.

Stage 2 Once we have a map M — A covered by a map from v to & as above, we perform
normal surgery to obtain a new, simply connected, manifold M’ mapping to A sat-
isfying the properties in (1), which is furthermore a rational homotopy equivalence.
To achieve this we make use of properties (i), (ii), (iv), (v). One then calculates that
the Chern classes of the stable tangent bundle of M’ (i.e. the sum of TM’ and a
trivial real bundle, with its induced almost complex structure) are the pullback of
the classes ¢; on X by the composition M’ — A — X. We then use property (vi)
to conclude that the stable almost complex structure on M’ is induced by an almost
complex structure.

The purpose of Stage 1 is to obtain a space which is for the purposes of rational homotopy
theory just as good as our original rational space X, but is furthermore equipped with a
complex bundle over it with appropriate rational Chern classes.

4. NORMAL SURGERY TO A RATIONAL HOMOTOPY EQUIVALENCE

We will begin with Stage 2, as it is here that surgery theory, in essence the main aspect of
the proof, comes into play. This section is for the most part a review of parts of [Br72], with
the exposition adapted to our needs (i.e. to the rational setting), certain pertinent details
elaborated on, and others that would derail the continuity simply referred to. This section
is fully expository, with the aim of providing the reader the key points needed to understand
half of Sullivan’s argument in [Sul77, Theorem 13.2]. We emphasize that this part of the
argument, except for Section , does not make use of the presence of an (almost) complex
structure, and so the discussion will focus on smooth manifolds and bundles.

We assume we have a map M ER A, where M is some closed smooth manifold, and A
is as in the description of Stage 1 above. That is, A is a simply connected space satisfying
Poincaré duality on its rational cohomology, with fundamental class [A], of the same formal
dimension as M; furthermore, f,[M] = [A] and f is covered by a bundle map v — £ which
is a fiberwise isomorphism, where v is the stable normal bundle of M, and £ is a real vector
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bundle over A; we refer to this as a normal map.

v —— &

L]

M%A

In our setting of interest, v will be the pullback of &; this property will be preserved under
the process of normal surgery which we now discuss. Since ¢ will have an almost complex
structure, the bundle v will inherit one. For now, though, we treat £ only as a real vector
bundle, and we keep in mind for later that there is an operator J on it with J? = —Id
(equivalently, its structure group lifts to the general linear group over C).

Definition 4.1. By a surgery on a manifold M™ we refer to the process of removing the
interior of the image of an embedding S? x D" ? % M, and attaching a DPT! x §n—»-1
identically along the boundary (note that 9(S? x D"?) = 9(DP*! x Sn=P~1) = P x Sn=p=1)
obtaining a new manifold M’. Such a process defines (after a canonical “smoothing” proce-
dure [Br72, p.83]) a manifold with boundary, the trace of the surgery W, by taking M x [0, 1]
with DPT! x D"P attached along its boundary to the boundary of M x {1} with the interior
of S x D" P removed.

Note that W, is a cobordism between M and M’. It has its own stable normal bundle
which restricts to that of M and M’ on its boundary.

Definition 4.2. Given a normal map M ER A, we will refer to an extension of this map to
a normal map W, Ly A as a normal cobordism, obtained by performing normal surgery. We

denote the normal map on the other end of the surgery by M’ Ioa
Since our surgery procedure will go through many steps, to keep notation simple, we adopt
the following convention: the manifold denoted M’ (and the map M’ EiN A) which is obtained

at the end of one step, will be denoted M Iy A'in the next step.

Note that if M 2 A is of degree one ie. f.M]=[A], then f’ is degree one as well, as we
have 0 = [0W] = [M] — [M'], so F,[M] = F,[M'], i.e. fi[M'] = f.[M]=[A].

@@
AGR

FIGURE 4.1. Surgery on an embedded S° x D! in the circle, and its trace.
Note how the trace deformation retracts onto a circle with an interval attached.

An important property of the trace is that it deformation retracts onto M with a DPT!
attached along the image SP of the embedding ¢; see [Br72, Theorem IV.1.3], and Figure (2)
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for an illustration. From here it follows that our normal map M Iy A extends to a normal
map W, — A if f extends over this attached DP™' and the map of bundles extends to w
restricted to DP*!) where w is the stable normal bundle of W, [Br72l Proposition IV.1.4].

Now, the approach to surgering the normal map M Iy A'to a normal map M’ — A which
is a rational homotopy equivalence will be the following: we consider the exact sequence

7TP+1(M)®@—>7Tp+1(A)®Q—>7Tp+1(f)®Q—>7TP(M)®Q%7TP(A)®Q_> e

This is the rationalization of the long exact sequence in homotopy groups of a pair (recall, Q
is a flat Z-module); one often writes m,(A, M) for m,(f). (Generally m(f) is not an abelian
group, and m(f) is not a group, so we will first perform a surgery to bring ourselves into
a situation where my(f) is abelian and m;(f) = 0.) Elements of m,.1(f) are represented by
maps SP — M which extend to a map DP*! — A, i.e. diagrams of the form

SP— M

Ll

Drtt —— A

The idea will be to inductively perform normal surgery on embedded p—dimensional spheres,

so that the map M’ f—/> A from the result of the surgery (i.e. the “right end” of the trace)
will have smaller-dimensional 7,1 (f") ® Q than the map on the “left end” of the trace, while
satisfying that 7<,(f’) ® Q = 0 if the same was true on the left end of the trace.

Suppose we are given an element in 7, (f), represented by a map SP % M which extends

over DP*! — A. When can we perform a normal surgery on this S? 2 M? We need the
following three conditions to be satisfied:

e S?” must be embedded in M.

e The normal bundle to S? in M must be trivial, giving us an embedded S? x D"7? in
M.

e The normal bundle map from M to A must extend over DPFL,

If the dimension of the sphere p is strictly smaller than half the dimension n of our manifold
M, then ¢ can be modified by a homotopy to an embedding, by Whitney’s “weak” embedding
theorem [Wh36, III], i.e. a general position argument. This can also be done if p = & by
Whitney’s “strong” embedding theorem [Wh44l 8-12], which we will discuss later. As for
the next two bullet points, we have the following: Since we are able to extend f over DPF!
(since ¢ represents an element in m,41(f)), then the composition of ¢ with this extension is
a nullhomotopic map to A, and hence the normal bundle v restricted to S? is trivial, with
an induced trivialization. Picturing M U, DP™' as embedded in a large disk (one can think
of Figure , the normal bundle to DP*! is trivial, and hence extending our bundle map is
equivalent to extending the trivialization of v on SP to all of DP*! (as, up to homotopy, all
of these points will be mapped to a single point in A). That is, our trivialization on S? gives
us a map from SP to the Stiefel manifold St(k, k +n — p) of k-frames in R¥™~P where k is
the (real) rank of the stable normal bundle; this map must therefore be nullhomotopic.

In fact, this element in 7,(St(k,k +n — p)) is the unique obstruction to extending our
normal map [Br72, Theorem IV.1.6]. If we can indeed extend our trivialization over DPT!
then the orthogonal complement to the normal bundle of DP*! it determines, when restricted
to SP, gives a trivialization of the normal bundle of S in M.
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Luckily, we have the following:

Proposition 4.3. (see [Br72, Theorem 1V.1.12]) For k > 2, the homotopy group T<,—,(St(k, k+
n —p)) is trivial.

We thus have:

Corollary 4.4. For an embedded sphere S* 2> M of dimension p strictly below half the
dimension of our manifold, the above described obstruction will vanish as it lies in a trivial
group. That s, we can perform normal surgery on this embedded sphere.

It follows in particular from here that the normal bundle of any embedded S? in M, such
that v restricted to S? is trivial, is trivial as soon as p < . Note that this follows alternatively
from the identity vee pr @ v|gr = vgp, i.e. the sum of the normal bundle to S? in M with
the stable normal bundle of M restricted to M, equals the stable normal bundle of SP. As
S? is stably parallelizable, the right-hand side is trivial, so the triviality of vg» s implies the
triviality of v|g».

In the case of even dimension n, when p = 2, the corresponding homotopy group is Zs if
pis odd, and Z if p is even [Br72, Theorem IV.1.12]; this will become relevant in Section
and onward.

4.1. The effect of surgery on homotopy groups. Now we consider what effect a surgery
on a representative ¢ of m,11(f) has on the homotopy groups of the manifold M and the map
f. As the trace W, deformation retracts onto MU, DP*!, we see that the inclusion M — W,
induces an isomorphism on 7., and the class that ¢ represents in m,(M) maps to zero. To
relate the homotopy groups of M to those of the manifold M’ at the other end of the trace,
we notice the following symmetry in the surgery process: since M’ is obtained from M by
a surgery on an embedded SP x D™ P, we have that M is obtained from M’ by a surgery on
an embedded DP*1 x S"=P~1 Furthermore, the trace of the “backwards” surgery is the same
as W,; see again Figure for an illustration. From here we have that W, deformation
retracts onto M’ with a D" attached. So, looking at the inclusions M — W, <= M’, some
consideration of indices shows:

Proposition 4.5. ([Br72, Theorem IV.1.5]) If p < %31, then mo,(M') = 7o,(M) and that
m,(M') is isomorphic to the quotient of m,(M) by the m (M)-module generated by the image
of o in (M) .

Let us now apply normal surgery to obtain a normal map M’ — A from a simply connected
manifold, so that we may speak freely of tensoring with the rationals. First we achieve
connectedness: by the Pontryagin—Thom construction which is used in Stage 1 to obtain our
starting manifold M, we see that M is a compact subset of some sphere, and hence has finitely
many connected components. Pick two points lying in different connected components. Note
that this is an embedding S° < M. Now by the above discussion, we may perform normal
surgery on this embedding (indeed, A is connected and hence the image of this S is connected
by a path in A), and after finitely many such surgeries we obtain a connected manifold. The
effect of the surgery is forming the connected sum of the two considered connected components
along small disks around each point. As for the fundamental group, choose a finite generating
set, and represent each element in the set by a smooth embedded loop. Since A is simply
connected, the image of this loop is nullhomotopic. As before we can thus perform normal
surgery on successively on each loop, with the effect that the fundamental group gets smaller
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after each surgery by the previous paragraph (here we use that our manifold has dimension
> 5, though 4 would suffice); after finitely many surgeries we have a simply connected
manifold:

Proposition 4.6. Asn > 5, we can normally surger M — A to a normal map from a simply
connected (and, in particular, connected) manifold M' — A.

Taking an element in 7, (f) represented by an embedding S? % M with trivial normal
bundle in M, such that f restricted to the image of the embedding extends over DP*! and
denoting the extension of f over the trace W, by F', we see that m,(F) is the quotient of
Tp+1(f) by the m (M)-module generated by our element in 7,1 (f) [Br72, Lemma IV.1.14].
In particular, dim 7, (F) ® Q < dimmp41(f) ® Q.

Now consider the following diagram of long exact sequences,

c— o (f) —— mp(M) mp(A) mp(f) Tp1(M) —— mp1(A) —— -

| | % | | |

o 1 (F) —— mp(Wy) »(4) mp(F) 1(Wy) —— mpa(A) —— -+

T T ]

= M () —— mp (M) mp(A) m(f) Tp-1t(M') —— mpa(A) —— -+

~

5

3
_;1

~

induced by the diagram

gﬁi

N

/

=

Since m<p_1(M) — m<p—1(W,,) are isomorphisms and m,(M) — m,(W,,) is surjective, by
the five lemma we have that 7<,(f) — 7m<,(F) are isomorphisms. If furthermore p < 21,
then recall that W, is obtained from M’ by performing surgery on a n — p — 1-dimensional
sphere. Sin(:en—l—p>n—1—"T’1:"T’1 > p, we have n —p —1 > p+ 1 and so by the
previous sentence, replacing p by n —p — 1, we have in particular that 7<,1(f") = 7m<p+1(F)
are isomorphisms. Tensoring the above ladder of long exact sequences with Q, we obtain in
particular the following:

Proposition 4.7. We have m<,(f")®Q = 7<,(f)®Q and dim mp4 (f)®Q < dim 74 (f)®Q.
Note that we cannot draw this conclusion if p > "T_l

4.2. Surgery below middle degree. Now we proceed to Kkill relative homotopy groups
inductively. Suppose M — A is a normal map with M simply connected; then m(f) is
trivial and mo(f) is abelian. Note that m,(f) ® Q is finite dimensional in every degree, since
7.(M) and 7, (A) are. Hence we may choose a finite basis of m(f)®@Q, and scale each element
if necessary so that it is in the image of the rationalization map mo(f) — mo(f) ® Q. Let us
assume n > 6 for the moment, so that 2 < ”T_l We can choose representatives of these basis
elements, given by maps of S? into M that extend over D3 to A; we may choose this map
to be a smooth embedding (by first finding a smooth representative of the map, and then
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using the Whitney embedding theorem). The obstruction to doing normal surgery vanishes,
since the appropriate homotopy group of the Stiefel manifold vanishes for such p (recall this
also implies the triviality of the normal bundle to S?, allowing us to perform surgery on
an embedded S? x D"2). After applying finitely many such surgeries (one for each basis

element), we have obtained a normal map M’ EiR A, where M’ is still simply connected, but
now m(f') ® Q = 0 as well.
We move on to w3(f’), and so on; the largest p that this procedure works is p = |n/2| —1,
where |n/2] denotes the floor function. Indeed, if n = 2m, then p < %1 gives p < m—1, i.e.
n—1

p<5—1ifn=2m+1, then p < *5= gives p < m—1 = 7 —1. So we finally obtain a normal

map M’ 5 A from a simply connected manifold M’ such that m<|,2(f') ® Q = 0 (recall
that at each stage p 4+ 1, we have that the vanishing of 7<,(f) ® Q implies the vanishing of
T<p(f') ® Q, along with a decrease in dimension of m,.; ® Q). As we will note later, the
homotopy groups of the space A we are working with, though finite dimension after tensoring
with Q, are not finitely generated, and so we can not hope to also kill the torsion in m,(f)
with finitely many surgeries.

4.3. Surgery in middle degree, and employing rational Poincaré duality. We may

thus assume M L5 A satisfies T<n/2)(f) ® Q (along with M being simply connected); we

now must deal with 7,,/2)41(f). The dimension of a representative sphere in an element of

this group is half the dimension of our manifold if n is even, and just below 7 if n is odd.

The obstruction to performing normal surgery lies in a trivial group if n is odd, and lies in

Zo or 7 if n is even. It is at this point that we finally make use of rational Poincaré duality

on M and A (note that everything up to this point works without this assumption)
Rational Poincaré duality gives us the following:

e First of all, we have:

Lemma 4.8. If m<|5/2)+1(f) ® Q = 0, then the map M Iy A is a rational homotopy
equivalence

As a consequence, there is no need to consider 7 |,,/2)4+1(f) ® Q, which would be
very complicated.

Proof. We have 7<|,/2/41(f)®Q = 0 implies that the induced maps <o) (M)®Q —
T<|n/2)(A) ® Q are isomorphisms, and hence, since M and A are simply connected,
the maps on homology H<|n/o)(M;Q) — H<|y2)(M;Q) are isomorphisms by the
(rationalized) Hurewicz theorem.

Generally, a non-zero degree map of rational Poincaré duality spaces is surjective
on homology in all degrees. Indeed, equivalently the dual map on cohomology is
injective; suppose some a € H*(A;Q) is such that f*a = 0. Take &’ such that
(ad’,[A]) = 1. Then on the one hand, we must have (f*(ad’), [M]) = (ad', f.[M]) =
(ad’, deg(f)[A]) = deg(f), while (f*(ad’), [M]) = ((f*a)(f*a’),[M]) = 0.)

Now we see that above half the dimension, in each degree the map H,.(M;Q) —
H.(A; Q) must be an isomorphism as well, as it is a surjection between spaces of equal
dimension (by our conclusion up to half the dimension). O

e It enables us to study the problem of killing 7,/241(f) ® Q: first observe that if
7 (f) = 0 and 7m<|n/2)(f) ® Q = 0, then by the rational version of the relative
Hurewicz theorem, we have 7, /2)41(f) ® Q = H\;j9)41(f; Q). This latter group is



16 ALEKSANDAR MILIVOJEVIC

isomorphic to the kernel of H /o) (M; Q) — H|,2)(A; Q), as seen from the long exact
sequence

o= Hipgap41(A;Q) = Hingo)41(f; Q) = Hipyo)(M;Q) — Hpypa)(A;Q) — -+,

which splits by surjectivity of the maps H.(M;Q) — H.(A;Q) discussed in the
previous point.

Hence, with A a rational Poincaré duality space, we may think of this whole surgery
procedure as “killing the kernel of f”. This viewpoint was not strictly necessary up
to this final stage of the surgery procedure.

4.4. The Whitney embedding theorem in dimension n/2. To perform surgery on
representatives of elements in |, /941 (f) ® Q (that are in the image of 7, 2/41(f)), we must
first make sure that every map of an |n/2|-dimensional sphere to M is homotopic to an
embedding. If n is odd, this is guaranteed by the version of the Whitney embedding theorem
used before. If n is even, we must use a stronger version of the embedding theorem, proven
also by Whitney several years later [Wh44].

First of all, by the “weak” Whitney embedding theorem [Wh36| §III], our map can be
approximated by a smooth immersion whose only singular points are transverse double points
(i.e. points whose preimage consists of exactly two points). If the sphere is even—dimensional,
each such double point carries a sign of £1 corresponding to whether the orientation on the
tangent space in the ambient manifold obtained from adding the pushforwards of the two
tangent planes on the sphere agrees with the ambient orientation or not. Given two double
points of opposite sign, if the dimension of the sphere is even, or any two double points if
it is odd, one can connect these points by two distinct arcs, forming a closed loop. Since
our ambient manifold M is simply connected, there is a two—disk whose boundary is this
loop, and which intersects the image of the sphere only on its boundary, transversally. To
ensure that this disk itself has no self-intersection, we recall our assumption that M is of
dimension > 5 and apply the weak Whitney embedding theorem again. It is at this point
that dimension 4 must be omitted from our overarching discussion.

Then, Whitney shows (with an argument now known as the “Whitney trick”) that, using
this disk, one can find a homotopy of the original map of the sphere through immersions to
a smooth map without the two double points considered. If the number of double points of
the original map was even, and the number of +1 double points was equal to the number of
—1 double points if the dimension of the sphere is even, then one applies this argument to
obtain a homotopy through immersions of the original map to an embedding. Details of this
argument can be found in [Wh44| §§8-12]. Now, if the number of double points was not even,
or double points of one sign were more numerous, then an additional argument is employed,
also due to Whitney. One may choose a small coordinate ball of the domain sphere in which
the map from the sphere to M is an embedding, and find a homotopy of the map which is
constant outside of the interior of the ball, to one that has one double point in the interior,
with sign +1 or —1 of our choosing if the sphere is even—dimensional [Wh44] §2]. (Note that
this homotopy will not be a homotopy through immersions.) One then arranges the number
and sign of double points to allow for repeated application of the Whitney trick, to find a
homotopy of the original map of the sphere to an embedding.

We also refer the reader to [Sc05] for a nice account of the Whitney trick.

Now that we can choose an embedded sphere to represent our element in m,/2)+1(f) ® Q,
we consider the obstruction to performing normal surgery. If n is odd, the corresponding
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Qi

FIGURE 4.2. An illustration of the Whitney trick.

homotopy group of the Stiefel manifold vanishes. If n = 2 mod 4, the obstruction lies in
Zs. If the obstruction for our choice of map S™? — M is non-zero, we precompose it with

the degree two self-map S"/? 2, §"/2 of the sphere. We can then find a homotopy of the

composition S*? 2 S"/2 — M to a smooth embedding, for which the obstruction now
vanishes as it is twice the original obstruction class. Killing this new class suffices for our
purposes, as we only aim to obtain a rational homotopy equivalence.

If n = 0 mod 4, denote the homology class represented by our map S™? — M (i.e. the
pushforward of the fundamental class of the sphere) by x. Then the obstruction to per-
forming normal surgery can be identified with (pd(x)pd(x), [M]), where pd(z) denotes the
cohomology class which is Poincaré dual to x; see [Br72, pp. 108-111].

Let us now focus on the case of n = 0 mod 4, and observe that classes in HLn/QHl(f; Q) =
ker f, have vanishing surgery obstruction. After this, we will discuss the effect on rational
homology of performing surgery on a sphere of dimension 7 if n is even, or "T_l if n is odd.

4.5. The pairing on homology in dimensions 0 mod 4 and the surgery obstruction.
First observe that since A % X is a rational homotopy equivalence, A satisfies rational

Poincaré duality with respect to the fundamental class [A] = g, '[X].

Definition 4.9. For a homology class = € H,(A;Q), we denote by pd(z) the unique coho-
mology class such that [A] Npd(x) =

We consider the pairing H,/2(A; Q) ® H,/2(A; Q) — Q given by z -y = (pd(z)pd(y), [A]).
We note the following:

Lemma 4.10. Cap product with [A] provides an isometry from the pairing on H?(A; Q) to

the above pairing on H,/2(A; Q).

Proof. For cohomology classes 2,y € H™?(A;Q), their pairing is given by (z'y/, [A]), and the

pairing of [A]N2', [A]Ny’ € H,a(A; Q) is given by (pd([A]Na)pd([A]Ny), [A]) = (s’ [A]).

We note that for homology classes =,y € H,3(A;Q), we have z -y = (pd(x), ), since
r(

z -y = (pd(z)pd(y), [A]) = (pd(z),[A] N pd(y)) = (pd(z),y) (see e.g. [Br72, Proposition
1.1.1]). O

4.6. Splitting of the pairing. Given our degree one map M ER A, we now observe:

Lemma 4.11. ([Ba76, pp.477-478]) The pairing on H,;»(M;Q) splits into a summand iso-
metric to the pairing on Hy2(A; Q) along with the kernel, which will consist of summands
isometric to the pairing on H,s(S™? x S"/%; Q) which has the form (9 }).
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A representing S™/? in the latter summands will thus have vanishing normal surgery ob-
struction.

Proof. To see that the pairing on H,/»(M;Q) splits, we note that the map H, »(M;Q) ELN
H,/5(A; Q) admits a section H,2(A;Q) = H,»(M;Q). Indeed, defining o by afa) =
[M] N (f*pd(a)), we have

feala) = f([M] 1 (f"pd(a))) = (f.[M]) Npd(a) = [A] N pd(a) = a.

This section provides an isometry from H,/(A; Q) onto its image in H, »(M;Q), and this
image is the orthogonal complement in H, o(M;Q) to ker f, in degree n/2. We refer the
reader to [Ba76l, p.477 f.] for details. In particular, we obtain that the pairing on H,,/»(M; Q)
restricted to ker f, is non-degenerate as well [Ba76l, Corollaire 2.4.4]. O

4.7. Signature of M. Recall that our realization problem started with a simply connected
rational space X with a choice of rational cohomology classes ¢;(X). In Stage 1, we find a
simply connected space A with a rational homotopy equivalence A % X such that A has a
complex vector bundle over it with Chern classes g*¢;(X); it is this vector bundle with respect
to which we have been performing our normal surgery. Here ¢;(X) denote the unique classes
solving the equation (14 ¢;(X)+co(X)+---)(14+¢61(X)+c2(X)+--+). The classes g*¢;(X)
pull back to be the Chern classes of the almost complex structure on the stable normal bundle
to M, while the classes g*¢;(X) pull back to those of the induced almost complex structure on
the stable tangent bundle. The Pontryagin classes p;(M) of M are determined by these Chern
classes, by the universal equation 1 —p; +po—--- = (1—c;+co—- - )(14+c1+ca+--+). From
here we see that the rational “Pontryagin classes” of X, so formed from the classes ¢;(X)

on X, pull back via the composition M Iy A% X to the Pontryagin classes of the (stable)
tangent bundle of M. By construction, f.[M] = [A] = ¢;'[X], i.e. g.fu[M] = [X]. We
have (L(p;(M)), [M])p = (f*L(p:s(X)), [M])sr = (L(pi(X)), [X]) x, where the latter quantity
is by assumption the signature of the pairing on H™?(X;Q) (and hence of the pairing on
H,/2(X;Q)), and (L(p;(M)), [M])ar is the signature of the pairing on H"/?(M; Q) (and hence
of the pairing on H,,/2(M;Q)) by the Hirzebruch signature theorem. Note that the pairing
on H"?(A;Q) is equivalent to the pairing on H™?(X;Q), with the isometry given by g*.
Since « is an isometry onto a direct summand of the form on H,,/(M;Q), we conclude:

Proposition 4.12. The signature of the pairing on H,(M;Q) is equal to the signature of
the pairing on H,;5(X; Q) plus the signature of the pairing on ker f,.

Combined with the previous calculation, this yields:
Corollary 4.13. The signature of the pairing on ker f, is zero.

4.8. The kernel pairing is equivalent to a sum of hyperbolic forms: the Witt
cancellation theorem. We now determine the form of this pairing on ker f,, using the
following form of the Witt cancellation theorem [MiHu73| §1.4.4]:

Theorem 4.14 (Witt). Suppose By,Bs,Bs are non-degenerate symmetric bilinear forms over
Q (or any field of characteristic not equal to 2). If the form By @ By is equivalent to the form
By @ B3, then Bs is equivalent to Bs.

We apply the Witt cancellation theorem in the following way: First of all, note that by
assumption (corresponding to the the necessary condition (iv)), the form on H, »(X;Q) is
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FIGURE 4.3. Surgery in degree L%J on a non-zero element in rational homology
kills the homology class and its dual under the homology pairing.

equivalent to Y ;_, £y? for some 7. Denote the isometric image of this form under « by B.
Let By be the bilinear form on ker f,; denote the dimension of ker f, by s. Now, we know
by previous considerations that B, @ B, is equivalent to the pairing on H,/»(M;Q), which
is equivalent to one of the form Z::f +y? since, M being a closed manifold, it is induced by
a unimodular pairing over the integers [MiHu73, §IV.2.6]. Let By be the form >/ *° =T
i.e. the last s summands of the pairing on M. Then B; @& By is equivalent to By @ Bs, and
so By is equivalent to Z:;Lf 41 +y?2. Since the signature of By is zero, we see that s is even,
and we may relabel the basis elements so that By is of the form

(22 —25)+ (25— 2]+ = (21— 2) (21 + 20) + (23 — 24) (23 + 24) + - - -

Notice that each (z; —z;11)(2;+2i11), in new basis elements Z; = % (zi — 2ziv1) , Ziv1 = 2i+Zig1,
is represented by the matrix (9}).

We conclude that B is equivalent to a pairing of the form @fi 2(91). We may thus
represent multiples of homology classes = in the kernel of f, in degree n/2 by embedded
spheres for which x -z = 0, i.e. for which the obstruction to performing normal surgery
vanishes. Next we will see that each such surgery in fact gets rid of two homology classes,

removing one summand of (§}) from the pairing on the kernel.

4.9. The effect of middle-degree surgery on homology. Now we will consider the
effect that surgery on embedded ¢ = |n/2]-spheres with trivial normal bundle, £ > 2, has
on homology. Let S¢ x D" * % M be an embedding, where ¢|ge represents a homology class
x that is non-zero in Hy(M;Q), and denote by M, the manifold with boundary obtained by
removing from M the interior of the image of ¢. The result of the surgery M’ will be M,
with a D1 x S"~“~1 attached along the boundary.

Following an argument of Kervaire-Milnor [KeMi63], one uses the Thom isomorphism on
the normal bundle to our embedded sphere, excision, and crucially Poincaré duality to show
that certain parts of the long exact sequence in relative homology for the pairs (M, M) and
(M', My) split (it is the existence of these isomorphisms and long exact sequences that makes
the problem tractable in homology as opposed to homotopy groups). The result is that if
n is even, middle-dimensional surgery lowers the rank of the middle degree homology by
two (and leaves the other ranks unchanged), while if n is odd, the homology right above
and below the middle decreases in rank by one; the classes being killed are x and its dual
in the homology pairing. Details can be found in [Br72, pp. 97-99, Theorem IV.2.15]; see
Figure [£.3 for an illustrative example.
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FIGURE 4.4. Surgery Kkilling the kernel on homology of a degree one map.

4.10. Conclusion of Stage 2: obtaining a rational homotopy equivalence. Using
Stage 1 of the proof, discussed below, we first find a closed n—manifold with a degree one
normal map to A. Applying normal surgery below dimension ¢, where n =2¢ orn = 20+ 1,

we can then find a simply connected manifold M with a degree one normal map M Iy Asuch
that m7<¢(f) ® Q = 0. Then applying the above discussion on middle-dimensional surgery,

we find a manifold M’ and a degree one normal map M’ Ty A such that T<+1(f) ®@Q = 0.
Indeed, since H;(M';Q) = H;(M;Q) for ¢ # ¢ the map [’ still satisfies 7<,(f) ® Q = 0
since it is surjective on rational homology as we saw, and through a sequence of surgeries we
achieve that the kernel on Hy(—;@Q) is trivial; this is enough to conclude that f’ is a rational
homotopy equivalence.

Remark 4.15. In [Br62], one will see the discussion of surgering a normal map to a homo-
topy equivalence as that of killing the kernel on homology for M — A. We followed [Br72]
and decided to postpone equating killing the kernel on homology with surgering to a homo-
topy equivalence, since this equivalence requires the assumption that A is a Poincaré duality
complex. However, one can see that even without having A satisfy Poincaré duality, much
of the discussion applies, as we have already remarked: we can still surger our map M — A
to be a (rational) homotopy equivalence up to right below the middle degree. Applying this
to the map classifying the stable normal bundle of a manifold with some additional structure
(such as spin, string, almost complex) we obtain statements such as: in sufficiently large
dimension, every spin manifold is spin cobordant to a 3—-connected one (since BSpin is 3-
connected), every string manifold is string cobordant to a 7-connected one (since BString is
7-connected), etc.

5. OBTAINING A CLOSED MANIFOLD WITH A DEGREE ONE NORMAL MAP

Now we go through Stage 1 of the construction. Recall, given a simply connected rational
space X satisfying rational Poincaré duality, of formal dimension n, with fundamental class
[X] and cohomology classes ¢;(X), our goal is to obtain a closed (simply connected) almost

complex manifold M with a rational homotopy equivalence M Iy X such that f«[M] = [X]
and f*c;(X) = ¢;(M).
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First, we find an intermediate simply connected space A, with a rational homotopy equiv-
alence A % X such that A comes equipped with a complex vector bundle ¢ over it whose
Chern classes ¢;(€) satisfy (14 g*c1(X) + g ca(X) + - ) (L + (&) + (&) +--+) = 1.

Recall that, for any N (which will in the sequel be large compared to n), the integral
cohomology ring of the classifying space BU(N) is given by Z[cy, ca, ..., cy|, where the ¢;
are the Chern classes of the tautological bundle v over BU(N). Hence the rational coho-
mology ring of BU(N) is Q[cy,¢a,...,cn|. Since a rational cohomology class of degree 2i
is determined by (the homotopy class of) a map to K(Q,2i) (analogously to the above, by
pulling back a natural generator of H*(K(Q,2i);Q)), we have a map BU(N) — K(Q,2) x
K(Q,4) x --- K(Q,2N) given by the cohomology class (c1,¢a,...,cn). We will also denote
the corresponding generators of the cohomology ring of K(Q,2) x K(Q,4) x --- K(Q,2N)
by C1,C2,...,CN.

The rational cohomology ring of K(Q,2:) is the polynomial algebra on one generator in
degree 2i (see e.g. [GrMo81l, p.55], using that K(Q,2:) is the rationalization of K(Z,217)).
From here we see that our map BU(N) — K(Q,2) x K(Q,4) x --- K(Q,2N) induces an
isomorphism on rational cohomology, and hence on rational homology; since both spaces
are simply connected, this is a rationalization map. From now on we write BU(N)g for

One can consider the classes ¢; on BU(N) determined by the equation

I+ca+ect+--+ey)l+a+c+---)=1

There will be non-zero ¢; of arbitrarily large degree, but notice, by solving equations induc-
tively by degree, that ¢, s, ...,y generate the cohomology of BU(N). The terms ¢>ny1
will be polynomials in the ¢<y. Hence the map BU(N) = BU(N)q given by (¢, ¢, ..., Cx)
is a rationalization as well. .

Now we consider the map X < BU(N)g given by (c1(X), c2(X),...). (Here we assume
that N is greater than the formal dimension; for the surgery step, Stage 2, we needed N,
which will be the rank of the stable normal bundle, to be much larger than the formal
dimension. From now on we take this to be the case.) Consider the homotopy fiber product
of the maps ¢X and v:

A —— BU(N)

(51) J{g l’u

X
X —<— BU(N)g

This diagram is commutative up to homotopy. It is the space A with the complex vector
bundle ¢ = u*y which we wish to use in our discussion in Stage 2. We list the properties we
require of A and the above diagram:

e A should be a simply connected space.

e The map g should be a rational homotopy equivalence.

e There should be a degree one map from some closed manifold M to A such that the
stable normal bundle of M is the pullback of €.

Note that the third point only makes sense after we have verified the second; the funda-
mental class of A we take will be [4] = g, [X].
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5.1. Fundamental group of A. An issue we face now is that, as constructed, A need not
be simply connected. Indeed, denote the homotopy fiber of BU(N) < BU(N)g by F. The
long exact sequence in homotopy groups tells us the following sequence is exact:

73(BU(N)qg) — ma(F) — me(BU(N)) — ma(BU(N)g) — m(F) — m(BU),
i.e. since N > 2 (and hence the listed homotopy groups of BU(N) are stable),
0= m(F)—>Z—->Q—-m(F)—0

is exact. The map Z — Q is injective since it is induced by rationalization, so we conclude
that 71 (F) is the abelian group Q/Z. Now consider the induced map of long exact sequences
in homotopy groups associated to the above homotopy fiber product diagram:

o(A) ——— 1(X) — m(F)

]

mo(BU(N)) — m(BU(N)g) — m(F)

1R

Since the map mo(BU(N)g) — m(F) is surjective (since 71 (BU( )) 0), we see that
mo(X) — m(F) is surjective if and only if m(X) — m(BU(N)g) = Q is surjective. By
the Hurewicz theorem this is equivalent to the map Hy(X;Z) — Hz(BU (N)g;Z) being
surjective. Since both spaces are rational and Hy(BU(N)g;Z) = Q, this is equivalent to

H?*(BU(N)g; Q) HZ(X Q) being non-zero; i.e. to ¢;1(X) being a non-zero element in
H?*(X;Q). Since 71(X) = 0, this is furthermore equivalent to m;(A) = 0. In summary, we
have:

Proposition 5.1. The space A as defined in is simply connected if and only if c; # 0.

So, if ¢1(X) # 0, we have ensured the first point above (i.e. that A be simply connected). If
¢1(X) = 0, we will have to make a modification to our setup in order to proceed. Recall that
complex rank N vector bundles with vanishing first integral Chern class are classified by maps
to BSU(N), where SU(N) is the special unitary group. The integral cohomology of BSU(N)
is given by H*(BSU(N);Z) = Z[cs, c3, . .. ,cn], and so K(Q,4) x K(Q,6) x --- x K(Q,2N)
is a rationalization of BSU(N), which we denote by BSU(N)g. As above, we have a map
BSU(N) = BSU(N)q (where now ¢; = 0), and we can consider the homotopy fiber product

A —" BSU(N)

(5.2) lg l

X - BSU(N)q

where ¢X = (c3(X), c5(X),...). Since my(BSU(N)) = 0, the homotopy fiber of BSU(N) =
BSU(N)q is simply connected, and so we have m1(A) = 0.

In either case, since the homotopy fiber of v has trivial rational homotopy groups, the map
A2 X is a map of simply connected spaces inducing an isomorphism on rational homotopy
groups, i.e. it is a rational homotopy equivalence, so the second point above is satisfied:
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Proposition 5.2. The map A & X is a rational homotopy equivalence between simply
connected spaces, where in the ¢;(X) # 0 case, A is defined as in (5.1), while in the ¢;(X) = 0

case, A is defined as in .

5.2. Finding a degree one normal map. As for the third point above, i.e. finding a
degree one map from some closed manifold M to A (where A has fundamental class g, *[X]))
such that the stable normal bundle of M is the pullback of &, we will have to take into
consideration the two distinct cases of ¢;(X) # 0 and ¢;(X) = 0.

Consider now the tautological complex rank N bundle v over BU(N), or over BSU(N) if
¢1(X) = 0. Denote by & = ¢g*v the pullback bundle over A. We consider the Thom spaces
Th(v) and Th(§) of these bundles, i.e. we consider the underlying real vector bundle, choose
a metric on the fibers, take the unit disc bundle, and collapse the boundary to a point.
Equivalently, we can obtain the Thom space by taking the mapping cone of the projection
from the sphere bundle of our vector bundle to the base space. Any map S™"2¥ — Th(¢) is
homotopic to one whose preimage of A C Th() is a smooth n—dimensional submanifold M
of S"T2N " see [Br72, p.33]; the normal bundle of M in S™*2¥ i.e. the stable normal bundle
of M, is the pullback of £ by this map.

Remark 5.3. One will see that [Br72, p.33| assumes the analogue of our space A to be a
finite complex; if this is satisfied, we embed this finite complex into some Euclidean space
and thicken it to a manifold [Br62]. Our A will not be a finite complex, but we can do the
following: first, find a cell complex A" with a weak homotopy equivalence A" — A, and pull
& back via this map. Then we consider maps of spheres into the Thom space of this bundle.
We choose a cell decomposition of the Thom space that extends that of A’; then our given
map of a sphere into the Thom space, being compact, intersects only finitely many cells of
A" (if the map misses A" completely, it is nullhomotopic, and hence homotopic to a constant
map landing in A’). The Thom space of our bundle restricted to these finitely many cells
naturally sits inside the Thom space of the bundle over A'.

We thus obtain a normal map M ENY'S However, the degree of this map remains unknown
to us at this point. The class f.[M] in integer homology is obtained by taking the image of
the Hurewicz homomorphism applied to the homotopy class of S"™2" — Th(¢), followed by
cap product with the Thom class of &; see [Br72, p.39]. We compose this map further with
the rationalization on homology:

Definition 5.4. We refer to the composition m,;2n(Th(¢)) e, H,(A;Q), of the Hurewicz
map followed by the Thom isomorphism and rationalization, as the Hurewicz—Thom map.

Hence, our goal is to show that [A] = ¢g;![X] is in the image of the Hurewicz—Thom map,
since this will provide us with a degree one normal map M — A.
The idea is to show that the diagram

Tnran (Th(E)) —> mpian(Th(v))

Jhta ht{

H,(A;Q) —— H,(BU(N); Q)

is a fiber product diagram of abelian groups. In H, (A4;Q) we take the class [A] = g, '[X].
By the assumption on the “Chern numbers” satisfying the Stong congruences, the class u,[A]
will be in the image of ht,, and hence [A] will be in the image of ht.
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N

FIiGURE 5.1. The Pontryagin-Thom construction.

To conclude that the above diagram is a pullback, first note that rationalizing the sphere
bundle S(§) — A gives a fiber bundle over Ay = X whose fibers are rational spheres. Denote
this bundle by S(§)g — X. We can do the same for S(y) — BU(N) (or S(y) — BSU(N);
we will write BU(N) for simplicity of notation from now on), and we can form the “Thom
spaces” of these rational sphere bundles by taking the respective mapping cones; the induced
map of long exact sequences in homology, together with the five lemma, shows that the
induced map of the Thom space to the “Thom space” of the rational sphere bundles is a
rationalization (these spaces are all simply connected).

We can now consider the following diagram, cf. [Su09, p.21]:

(5.3)

The maps in this diagram are induced by the universal properties of (co)fibrations and
rationalization; namely, for the latter, given a rationalization map Y % Yo and a map

v L Zg to another rational space, there is a map Yy LQ> Zg, unique up to homotopy, such
that f is homotopic to fg o p. This can be seen from obstruction theory; the argument is
very typical of rational homotopy theory, so we include it here: the obstructions to extending
f over the map p lie in H*(Yy, Y;m—1(Zg)), where (Yg,Y) denotes the mapping cone of p
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(i.e. we convert p into a inclusion and consider the corresponding pair of spaces). Since p
is a rationalization, the pair (Ygp,Y) has only torsion in its homotopy groups. Since Zy is
rational, the groups H*(Yyp, Y;m.—1(Zg)) vanish. Likewise, the obstructions to uniqueness of
the extension, which lie in H*(Yy, Y; 7m.(Zg)) vanish.

Generally, given a (homotopy) commutative square of spaces where the vertical maps are
rationalizations, the square is a homotopy pullback (i.e. a homotopy fiber product) if and
only if it is a homotopy pushout [TW79, Lemma 6.1]. Using this equivalence, one then argues
the following:

Proposition 5.5. (¢f. [Su09]) The innermost square involving Thom spaces in is a
homotopy pullback.

This follows from observing that this square is a homotopy pushout of two homotopy
pushout (equivalently here, homotopy pullback) squares. We refer the reader to [Su09] (and
to [M21] for some further details).

5.3. Verifying that the prescribed fundamental class is hit. With this in hand, we
now consider the diagram (again cf. [Su09])

(5.4)

Tt (Th(E)) Tnt2n (Th(7))

7Tn+2N(Th(£)Q) 7T7L+2N(Th(’7)Q)

where the upper diagonals are the corresponding Hurewicz—Thom maps, and the lower
diagonals the induced maps on rationalizations. More precisely, we first have the following
diagram of abelian groups:

Tnsaon (Th(E)) Tntan (Th(7))

hte Rt

H,(A;Q) > H,(BU(N);Q)

-
- ~

Tns2n (Th(€)g) Tutan (Th(7)e)

The dashed arrows are the unique maps making the left square and right square commute,
respectively (a map from a finitely generated abelian group G to a rational vector space
factors uniquely through a given rationalization G — G ® Q). With some diagram chasing
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together with this uniqueness property of the factorization through a rationalization on the
level of abelian groups, we conclude that the bottom square commutes.

Lemma 5.6. The lower diagonals htéQ and htg mn are isomorphisms.

Proof. Indeed, since we are taking N to be large with respect to n, the rationalized Hurewicz
map 1oy (Th(§))®Q — H,ion(Th(€); Q) is an isomorphism; this follows from the fact that
Th(¢) is a simply connected space whose first non-trivial rational homology group is in degree
2N (by the Thom isomorphism theorem) and the rational Hurewicz theorem. (A direct way
to see this would be through employing rational homotopy theoretic minimal models [Sul77]:
the minimal model of Th({) has no generators below degree 2N, and so any non-trivial
element between degrees 2N and 4N — 1 must be a linear combination of generators. Since
the differential contains no linear terms, elements in degree < 4N — 2 must be closed; in
particular, H*(Th(§); Q) is spanned by closed generators of the minimal model, which is
equivalent to the (dual) rationalized Hurewicz homomorphism being an isomorphism. Note
that elements in degree 4N — 1 must be linear in the generators, but may not be closed; this
gives the surjectivity part of the rational Hurewicz theorem.)

Then, the map H,,1on(Th(£); Q) — H,(A;Q) is an isomorphism by the Thom isomorphism
theorem, and hence the composition 7, on(Th(§)) ® Q — H,1on(Th(€); Q) — H,(A; Q) is
an isomorphism, giving that htéQ is an isomorphism (by tensoring the left-most square in (|5.4)
with Q); likewise for ht?. O

Proposition 5.7. The class [A] € H,(A;Q) is in the image of hte, In particular, [ X] €
H,(X;Q) isin the image of g.hte. Therefore, there is a closed stably almost complex manifold
M with a normal map to A such that f.[M] = [A].

Proof. Consider the element ¢X[X]| € H,(BU(N)g; Q). We first show that this class is in the
image of the map v,ht,.

As a first case, we show that [X] is in the image of g.hte in the case of n odd. In this
case ¢ [X] = 0 since H*(BU(N)g;Q) = 0. Then 0 € m,,onTh(y) will map to ¢X[X]
under v,ht,. Since ht? is an isomorphism, it follows that (ht?)*l[X | € TpianTh(€)g and
0 € TpyonTh(y) map to the same element in 7,40y Th(y)g (namely (ht%)~'c¢¥ [X]).

Now, as discussed, the diagram of Thom spaces is a homotopy pullback square, and so we
have an induced Mayer—Vietoris long exact sequence in homotopy groups,

—

e 2 (Th(€)) L2 7 (Th(4)) @ 7 (Th(€)g) 222 7, (Th(7)g) 2 mu_s(Th(E)) — - -

where 1, g, 0,c¢X denote the induced maps on Thom spaces. From here it follows that
there is an element § € m,1on(Th(£)) that maps to (ht?)_l[X | and 0 respectively. Then
gxhte(B) = [X] as desired.

Now suppose that [X] is even, so c; [X] is not necessarily zero. We now take into con-
sideration condition (iii) from the beginning, namely that the “Chern numbers” on X are
integers satisfying the Stong congruences. If we are in the case of ¢;(X) = 0, then the
Stong congruences are strictly stronger in dimensions n = 4 mod 8 (i.e. the description

X

*

of the image of Q%Y =+ H,(BSU;Q) involves more congruences than those describing the

image of OV = H,(BU;Q)). In either case, suppose the Stong congruences are satisfied.
This means there is some stably almost complex manifold Y (with vanishing first Chern
class integrally if we are in the ¢;(X) = 0 case) such that (¢;, (X)ci,(X) -+ (X),[X]) =
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(i, (Y)ey,(Y) - ¢; (Y),[Y]) for all tuples (i1, s, .. .,1,) whose total degree is n. For simplic-
ity, let us denote e.g. ¢;; (X)ci, (X) -+ ¢, (X) by co(X).
Note,

(calX), [X]) = {(¢¥) (ca), [X]) = {ca, (¢¥).[X]).

On the other hand, consider the map Y 2% BU (or, to BSU), classifying the stable normal
bundle of Y, i.e. 1§~ is the stable normal bundle of Y (with its complex structure). By the
Pontryagin-Thom construction, there is an element fy € m,4on(Th(7)) such that ht,(By) =
v.[Y] (namely, Y is constructed by taking the preimage of BU or BSU under a suitable
representative of the homotopy element, and as a consequence the induced map from Y to
BU or BSU classifies the stable normal bundle Y). Here we consider v,[Y] as an element in
rational homology. Since vy pulls back the universal Chern classes ¢; to the Chern classes
of the stable normal bundle of Y, it follows that vy pulls back the classes ¢; to the Chern
classes of (the stable tangent bundle of) Y. So, we have

(ca(Y), [V]) = (v"Ca, [Y]) = (Ca, (y):[Y]) = (Ca, it (B ))-

Furthermore, since we are only considering Chern classes up to degree n, we have ¢; = v*¢;,
and hence

(Ca ity (By)) = (V" (ca), bty (By)) = (Car va(hty (By))).

In conclusion, (¢, (¢X).[X]) = (ca, v (ht,(By))) for all o, and since the ¢, span the vector
space H"(BUg;Q), we conclude that (cX)*[ ] = vi(ht,(By)). Hence, there is an element
B € muion(Th(§)) that maps to (ht?) 1[X], and g.hte(8) = [X]. O

5.4. Stable almost complex structure on the resulting manifold and its Chern
classes. Now that we have obtained a manifold and a degree one normal map to A, we

go through Stage 2 of the proof to obtain a degree one normal map M Iy A which is a

also a rational homotopy equivalence, and thus the composition M Iy A% X is a rational
homotopy equivalence.

We pull back the complex structure from the vector bundle v to £ and then to the stable
normal bundle v, (a normal map gives a real bundle isomorphism between v, and f*¢, and
so we can transport the complex structure from f*£ to vy,.) By construction, the fundamental
class [M] is determined by the orientation of the stable normal bundle (as a real bundle) in the
Pontryagin—-Thom construction (see e.g. [Br62, Lemma 2]), and hence the complex structure
we are equipping the stable normal bundle with induces this same orientation. This can also
be seen tautologically from the diagram

M — A— BU(N)— BSO(2N),

where the map BU(N) — BSO(2N) classifies the real vector bundle underlying the tau-
tological bundle . The stable normal bundle to M, as a real vector bundle, is by the
Pontryagin—Thom construction classified by this composition, and hence it lifts to a complex
vector bundle by looking at M — A — BU(N).

We record the following well-known lemma:

Lemma 5.8. A complex structure on the stable normal bundle of a manifold determines
a complex structure on the stable tangent bundle. In particular, we have a stably almost
complex structure on M.
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Proof. The stable normal bundle as a complex vector bundle is classified by a map M —
Gre(N, N') of complex N-planes in CV', for some large N’. With the standard Hermitian
inner product on CV', we have a diffeomorphism Gre(N, N') BN Gre(N'— N, N') sending a
plane to its orthogonal complement. The composition M — Grc(N, N') BN Gre(N'— N, N')
gives a complex structure on the stable tangent bundle to M, as seen from the commutative
diagram

Gre(N,N') —=—— Gr¢(N' = N, N')

| |

Gre(2N,2N") —— Grg(2N’ — 2N,2N)

where the map L between real Grassmannians sends a real plane to its orthogonal complement
with respect to the standard Euclidean inner product on R?Y'. We see that the total Chern
classes of the stable normal bundle to M and the stable tangent bundle (with this complex
structure) multiply to the unit class. O

Now we calculate the Chern classes of this stable almost complex structure. We have the
following diagram:

Un y & >y
Pl
M » A —~— BU(N

)

g9 v
Pl
X —— BU(N)g
Lemma 5.9. The Chern classes of this complex structure on the stable tangent bundle of M
satisfy c;(M) = (g.f)"ci(X).
Proof. Indeed, we have

ci(M) = ¢i(var) = fra(§) = fra(u™y) = fruely) = (uf) ely)
= (uf)vei = (vuf)e; = (Fuf)e; = frg" () e = (9f) ei(X),
where we used that ¢ < ¢ in order to have ¢;(v) = v*c;. O

Now recall our necessary condition (vi) in order for this stable almost complex structure
to be induced by an almost complex structure: we must have (¢, (M), [M]) = x(M), by the
obstruction-theoretic definition of the top Chern class. Recall, since

{en(M), [M]) = x(M) = ((9.])"ca(X), [M]) = (cn(X), (9)<[M]) = (ca(X), [X]),

this is equivalent to (¢, (X), [X]) = x(X), since M and X have the same Euler characteristic
by virtue of being rationally homotopy equivalent. Conversely, we have:

Proposition 5.10. If (c,(X), [X]) = x(X), then the stable almost complex structure on M
18 1nduced by an almost complex structure.

Proof. Indeed, by a classical result (see [Ka69, Corollary 3] for details), the top Chern class
evaluating to the Euler characteristic is a necessary and sufficient condition for reducing to
a genuine almost complex structure on M. More precisely, if M is a stably almost complex
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manifold with (¢, (M), [M]) = x(M), then there is an almost complex structure on M, giving
a lift M — BU(n) of the tangent bundle map M — BSO(2n), such that the composite map
M — BU(n) — BU is homotopic, through lifts of the map M — BSO classifying the
stable tangent bundle, to the map M — BU provided by the original stably almost complex
structure. 0

This concludes the proof of Theorem [2.4]

Remark 5.11. Consider again the diagram

Tnran (Th(E)) Taton (Th(v))

K ht~

H,(4;Q) = H,(BU(N);Q)

Choosing an element of m,anTh(&) gives us a fundamental class [A] in H,,(A; Q) by looking
at its image under the Hurewicz—Thom map, and this fundamental class will the image of a
stably almost complex manifold by applying the Pontryagin—Thom construction to our chosen
homotopy element in the Thom space. Indeed, by construction (i.e. commutativity of the
diagram) the image of [A] in the homology of BU(N) will land in the lattice described by
Stong. The issue here is that we do not have control of what exactly the Chern numbers of
our manifold will be, so we do not know what the top Chern class will evaluate to, and, in
the case of dimension divisible by four, whether the signature will be computed correctly.

Remark 5.12. Let us comment further on the case of ¢1(X) = 0. For dimension n not
congruent to 4 mod 8, suppose we do not replace BU by BSU; we would be led to do so
if we wanted to characterize all (not necessarily simply connected) stably almost complex
manifolds with a rational homology equivalence to our given rational homotopy type. The

homotopy pullback of X LaN BU(N)g and BU(N) % BU(N)q gives us the map A END'¢
From the long exact sequence in homotopy groups, since the homotopy fiber of v has trivial
rational homotopy groups, we see that A 2 X is an isomorphism on rational homotopy
groups.

The fundamental group of A is Q/Z. Now, as before, we can obtain a stably almost complex
manifold M with a degree one normal map to A. Since A is not simply connected as it was
before, we cannot simply surger M down to a simply connected manifold. However, noticing
that all commutators in the finitely presented group m (M) become trivial when mapped over
to A, we can surger M down to a manifold with abelian fundamental group. Since this
is now a finitely generated abelian group, we can identify the infinite cyclic summands in
the group; the gemerators of these groups, mapped to A, become torsion, and hence some
multiple of the generator in each of the infinite cyclic summands can be surgered out. We
end up with M whose fundamental group is finite and abelian; in particular, the map on
fundamental groups to A is a rational isomorphism, since both groups are torsion. We can
further perform surgery to make the map m (M) — m1(A) injective. Then mo(f) is an abelian
group. Since it is rationally homotopy equivalent to X, A has degree-wise finite dimensional
rational homotopy groups, and this surgered M does as well, since it admits a finite cover
which is a simply connected closed manifold.

We can then perform surgery as before, getting rid of m.(f) ® Q up to the middle degree;
however, it is in middle degree that the following difficulty arises: we have no guarantee that
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the relative Hurewicz map will give an isomorphism between the homotopy group of f and
the homology of the kernel, an identification that was crucial earlier. One could hope that
relative Hurewicz would hold (rationally) if the pair (A, M) were nilpotent, but whether this
15 the case is not clear.

6. CONSEQUENCES AND REMARKS

Notice that all the necessary conditions (i)—(vi) for realization by a closed almost complex
manifold were cohomological, and that ¢; of a simply connected manifold is trivial integrally
if it is trivial rationally. Since in dimensions > 6 these conditions were also sufficient for
realization by a simply connected closed almost complex manifold, we have:

Corollary 6.1. The realizability of a simply connected rational homotopy type by a simply
connected closed almost complex manifold depends only on its cohomology ring.

Proof. Tt only remains to check dimensions < 4, the only non-trivial case being dimension
4. Any simply connected manifold in this dimension has the rational homotopy type of
kCP24(CP2. By Hirzebruch’s congruence, if M is a closed almost complex manifold with
the rational homotopy type of kCP24¢CP2, then k is odd. On the other hand, for k = 2k'+1
odd, the manifold kCP?#(CP? admits an almost complex structure by Wu’s criterion. Indeed,
choosing ¢ = (3,1,3,1,...,3;1,1,...,1) € H*(kCP*#(CP2;Z) (where the ; is placed between
positions k£ and k£ + 1), we have that ¢ reduces mod 2 to the second Stiefel-Whitney class,
and that ¢? evaluates to 10k’ +9 — £ = 2x + 30. O

We remark that there might exist non-simply connected almost complex manifolds with
c; = 0 rationally not satisfying the stronger set of SU congruences, and hence to obtain
the above equivalence in dimensions congruent to 4 mod 8, we restrict to simply connected
manifolds.

Remark 6.2. A simply connected rational homotopy type is determined, up to homotopy
equivalence, by a minimal Cy —algebra structure on its cohomology (extending the given multi-
plication), up to isomorphism [KO8]. That is, for a given graded-commutative algebra (H,ms),
where mqy 1s the multiplication, we have

{rational spaces X with H*X = (H,my)}/~ = {Cwx structures (H,ma, ms, my,...)}/~.

The realizability of a simply connected rational space by a simply connected closed almost
complex manifold is insensitive to the higher operations m>s. Contrast this with the case
of compact complex manifolds which satisfy the 00-lemma (for ezample, compact Kdihler
manifolds), where among all rational homotopy types realizing a given cohomology algebra,
at most one of them, namely the formal one, is realized by such a manifold [DGMST5].

In particular, for every simply connected almost complex manifold, there is a formal almost
complex manifold with the same rational cohomology ring (with the same Chern numbers, so
the two manifolds are furthermore complex cobordant). We remark that in dimensions 2 and
4 every closed simply connected manifold is formal. It is perhaps the other direction that is
more interesting: knowing that a formal rational homotopy type can be realized by a closed
almost complex manifold implies that any rational homotopy type with the same cohomology
ring can also be realized.

An easy consequence of Theorem that demonstrates the abundance of rational homo-
topy types of closed almost complex manifolds is the following:
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Corollary 6.3. Any simply connected rational space satisfying Poincaré duality of formal
dimension 4k + 2, with Euler characteristic zero, is realized by a closed almost complex
manifold.

Proof. Since the Euler characteristic vanishes, one can choose all rational Chern classes to be
trivial, and make any choice of fundamental class, to satisfy the conditions of Theorem [2.4]
O

In the case of formal dimension 4k, note that the property from the necessary condition
(iv), i.e. the middle-degree pairing being of the form Y, £, is indepedent of the choice of
fundamental class; see Remark for details. Thus, choosing any fundamental class, and all
rational Chern classes to be zero, we also have the following:

Corollary 6.4. Any simply connected rational space satisfying Poincaré duality of formal
dimension 4k, with Euler characteristic zero and signature zero, whose middle-degree pairing
is of the form Y, £, is realized by a closed almost complex manifold.

Example 6.5. For reference, we list the congruences among Chern numbers for stably almost
complex manifolds of dimension < 10. The congruences in dimension < 8 were listed by
Hirzebruch in [Hi60]. We implicitly assume the given class is paired with the fundamental
class of the stably almost complex manifold.

e Dimension 2: ¢; € 27
e Dimension 4: ¢i + ¢y € 127
e Dimension 6: ¢} € 27, c3 € 27, cicy € 247
e Dimension 8:
2] + cley € 127,
ci1c3 — 2¢y € 47,
—cy + c1c3 + 3¢5 + Aciey — ¢ € T20Z

Dimension 10:

ci1cq + ¢ € 127,
40‘;’02 + 80%03 + c1¢4 + 9c € 247,
15¢5 — By + 12¢1¢5 + 8cies — 8eicy € 247,
¢} + cleg + 6cies € 127,
—0:1))02 + 30103 + C%Cg — c1c4 € 14407.

From the congruences listed above, we see that any simply connected rational space sat-
isfying Poincaré duality in dimension 6 is realized by an almost complex manifold. Indeed,
we can choose ¢; = 0, ¢co = 0, and the fundamental class and c3 so that c3 evaluates to the
Euler characteristic. The congruences in dimension 6 require c3 to be even, but this will be
automatically satisfied as the Euler characteristic of a 4k 4+ 2—dimensional Poincaré duality
algebra is even. A simply connected rational space satisfying rational Poincaré duality of
formal dimension 6 is formal [Mill79], that is, its rational homotopy type is determined by its
cohomology algebra. From here, by degree reasons we see that any such rational homotopy
type will be of the form M#N, where M is a simply connected 6—manifold with b3 = 0, and
N is a connected sum of some number of copies of S? x S3. We remark that even for a small
value of by there are many rational homotopy types with b3 = 0 and this by; for example
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the real homotopy type of CP3#CP? contains infinitely many rational homotopy types, i.e.
rational cohomology algebras; see [Mar90, Example 3.5]. (For by < 1 and b3 = 0 there is only
one rational homotopy type.)

Remark 6.6. On the cohomology of a 6-dimensional simply connected rational Poincaré
duality space, duality gives us an isomorphism H* = (H*)V, and so the product H*®@ H*> — H*
is given by a symmetric trilinear form H?> @ H?> @ H?> — Q. This trilinear form determines
the cohomology algebra of our space, and hence its rational homotopy type. In the case of
dim H? = 3, such trilinear forms correspond to (rational) cubic plane curves; the abundance
and structure of such curves, paired with choices of rational Chern classes, suggests this may
be an interesting line of further study, cf. [Sul77, Example p.322].

In all even dimensions n > 8 there are examples of simply connected rational homotopy
types not realized by almost complex manifolds; indeed one can take the rationalized spheres
Sp (see [AMI19, Theorem 2.2], adapting a famous observation of Borel and Serre to the
rational setting).

In dimension 10, we see from the congruences in Example that any simply connected
rational homotopy type satisfying Poincaré duality, with Euler characteristic divisible by 24,
is realized by an almost complex manifold ,by setting the lower Chern classes to be zero. In
all dimensions of the form 4k + 2, we see that the only obstruction to realizability is a finite
divisibility constraint on the Euler characteristic.

One can also ask about the realizability of real homotopy types by closed almost complex
manifolds. Unfortunately, an immediate problem presents itself in this case as H*(K (R, n); R)
is not the free graded-commutative algebra on one generator [OpZB]|. In fact, H.(K(R,n);R)
has uncountable dimension. It is the case that H*(K (R, n); R) is the free graded-commutative
algebra on one generator if one interprets the former in the context of continuous cohomology,
but we do not pursue this here. Of course, for a given real homotopy type to be realized by
a closed manifold, there must be a rational commutative differential graded algebra which
reproduces the given real homotopy type upon tensoring with the reals. Of course, if we have
such a rational cdga, we may take the corresponding rational homotopy type and attempt
to realize it by a manifold as usual; however, the problem of detecting whether there exists
such a rational cdga for a given real homotopy type seems quite delicate.

Remark 6.7. In Sullivan’s original formulation of the realization theorem for closed smooth
manifolds [Sul77, Theorem 13.2], one sees that the Stong congruences (for BSO; they are
non-trivial only in dimensions of the form n = 4k) are not mentioned in the signature 0 case.
If the quadratic form on H"*(X;Q) given by a ® B+ (afB, [X]) is equivalent over Q to one
of the form Y. +x? for some choice of fundamental class [X] € H,(X;Q), then it will be
of this form for any other non-zero choice of [X|' € H,(X;Q). Indeed, since the signature
is zero, by assumption we can write the intersection form with respect to [X] as Y, 3 — y?.
Scaling the fundamental class by a rational changes this into ), §w? — §yi2, which is the same
as 3, (L+ L)+ (1= £)y)? — (L — L)+ (L+ £)y)*. In particular, we may scale the
fundamental class until all of the Stong congruences are satisfied. We cannot do the same in
the almost complex realization problem in the signature 0 case, as our choice of top Chern
class is tethered to the fundamental class by the requirement (can, [X]) = x(X).
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7. EXAMPLES

We now give some concrete calculations concerning the realization of certain rational ho-
motopy types by closed almost complex manifolds. As in Example [6.5] we implicitly pair top
degree classes with the fundamental class.

7.1. Rational connected sums of quaternionic projective planes. Using the results
of [GeM00], one can calculate that kHP?#¢HP? (with its standard smooth structure) admits
an almost complex structure if and only if (k,1) = (4n + 3,2n + 1) for some n. Let us
see what happens in the rational case; i.e. we consider 8-manifolds M with H*(M;Q) =
H *(k:HIP’Q#KW; Q). We refer to such a manifold as a rational kHIP2 4 (HIP2.

We will use the Chern number congruences for stably almost complex 8-manifolds in what
follows (see Example [6.5)):

—cy + cre3 + 3¢5 + 4ciey — ¢ € T20Z,
cicy + 2¢) € 127,
—2¢4 + c1c3 € 47,
which in our case trivially becomes
—cyq + 303 € 7207, and ¢, is even.

Now, suppose we have a rational kHP24¢HP? that admits an almost complex structure.
Then 0 =k — /¢ and xy =2+ k + £, so from Hirzebruch’s relation ¢ = y mod 4 in dimension
8 [Hi87, p.777], we have k — ¢ = 2+ k + ¢ mod 4, i.e. 20 = 2mod 4, i.e. ( is odd. Since
k+ 0+ 2= x = ¢4 must be even, we conclude that k is odd as well.

We show that the above observation on when kHP?#4¢HP? admits almost complex struc-
tures does not carry over to the rational setting. Let us consider as a first example k = ¢ = 23.
Then ¢4 must evaluate to x = 48, and 0 = 0. We can write ¢y as ¢y = Zfil T+ Zfil v,
where the z; and y; are degree 4 classes such that (z?,u) = 1 and (y?, u) = —1 for an appro-
priate choice of fundamental class p, and z;x; = z;y; = y;y; = 0 for all i # j. (The variables
x; correspond to the degree 4 generators in the HP? summands, while the y; correspond to
HP2.) The signature equation in terms of Chern classes is 7=(3¢3 + 14cq) = 0, i.e. 3 = —224.
We see that the Stong congruences are satisfied for this ¢ and ¢;. Indeed, ¢4 is even and
—c4+3c3 = 0. Tt only remains to check that one can solve for c;. Taking ¢y = 4y, +8ys+12ys,
we have c3 = —224.

By the almost complex realization theorem we conclude that there is an almost complex
manifold realizing this data.

We now observe that the above fits into a more general solution; let k,¢ > 0 be arbitrary.
The signature of a rational kHP?4#¢HP? is k—¢ and the Euler characteristic is 24+k-+¢. Besides
the Euler characteristic being even, we must have 3¢3+14c¢, = 45(k—¢) and —cy+3c3 € T20Z.
Let us write this as

3¢5 = 31k — 59¢ — 28,

3c3 =T20m +k+( +2.
From 31k — 59¢ — 28 = 720m + k + £ + 2 we have k = 2¢ + 1 + 24m. In particular, k is odd,
so we write k = 2n + 1. Then £ = n — 12m, and ¢ = 236m +n + 1. Since 2+ k + £ must be

even (by the Euler characteristic requirement), we have that ¢ is odd as well, i.e. n is odd;
we write n = 2u + 1.
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So, the solutions are (k,¢,c3) = (4u + 3,2u + 1 — 12m, 2u + 2 + 236m); since we require
k,¢ > 0, we have u > 0 and 2u + 1 > 12m. Fixing k£ and /¢, i.e. v and m, we see that
the problem of obtaining an almost complex rational KHP?#¢HP? comes down to finding
a class ¢y such that ¢ = 2u + 2 4 236m. We use the same notation for generators of the
cohomology as in the case of k = ¢ = 23 considered above. If m = 0, and u = 0, we have
(k,l,c3) = (3,1,2), and we can take ¢y = 1 + x5, which satisfies ¢3 = 2. If m = 0 and u > 0,
then k& > 4, and we may solve for ¢, using Lagrange’s four-square theorem since ¢3 > 0. If
m > 0, then u > 6 and so k > 4, and we may again apply Lagrange’s four—square theorem
to solve for ¢, since ¢3 > 0. If m < 0, then ¢ > 4, and so if ¢2 < 0 we can solve for cy. If
m < 0 and ¢ > 0, then 2u + 2 > —236m, so in particular k = 4u + 3 > 4, and we can solve
for ¢, again.

In conclusion, we have the following:

Proposition 7.1. There is a closed almost compler manifold with the rational cohomology

ring of kHP?#(HP? if and only if (k,1) = (4u + 3,2u + 1 + 12m) with k,1 > 0.

For m # 0 any such obtained manifold is consequently not of the same oriented diffeomor-
phism type as kHP?#(HP? with its standard smooth structure. The previous observation
above with k = ¢ = 23 is obtained by taking u = 5, m = 1. We refer the reader to the upcom-
ing [Su2l] for general results on almost complex manifolds with Betti numbers concentrated
in middle degree.

Remark 7.2. e Generally, the coefficients along the x; and y; could be taken to be
rational numbers, not necessarily integers. However, an integer is a sum of rational
squares if and only if it is a sum of integer squares, so we are reduced to considering
integer coefficients regardless.

e Above we used Hirzebruch’s relation [Hi87, p.777] that on a closed almost complex 4n—
manifold, we have x = (—1)"o mod 4. Since every even—dimensional stably almost
complex manifold is complex cobordant to an almost complex manifold [Ka69, Corol-
lary 5], and the Chern numbers and signature are complex cobordism invariants, this
shows us that Hirzebruch’s relation is the restriction to almost complex manifolds of
a general congruence cop, = (—1)"0 mod 4 for stably almost complex manifolds. Since
this is a relation between Chern numbers, it is implied by the Stong congruences.

For example, in the case of almost complex 4—manifolds, we have x +o = 0 mod 0.
This follows from the integrality of the Todd genus, ¢} + cy € 127, combined with
30 =p = c% — 2¢y. Indeed, expressing c% mn two ways gives us 12k — co = 30 + 2¢
for some integer k, i.e. 3(o + c2) = 12k, whence o + co = 0 mod 4.

o Let M be an almost complex rational KHP?*#(HP? constructed by the above procedure
(so that c; = 0 integrally). By [GeMO00, Corollary 7], if M were to admit an almost
complex structure, i.e. one inducing the opposite orientation on M, then x(M) =
0. This shows, for example, that a rational 23HP?#23HP? obtained as above does
not admit an orientation-reversing diffeomorphism (even though the notation might
suggest so0).

7.2. An almost complex rational HP?. We show the following:

Theorem 7.3. There exists a closed simply connected almost complex 12-manifold with the
rational homotopy type of HIP3.
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A classical result of Massey [Mas62] states that no HP™ admits an almost complex struc-

ture; a rational HP! = S* does not admit an almost complex structure by a quick signature
argument, and a rational HP? does not admit an almost complex structure by a calculation
with the Stong congruences. In general, the only dimension in which there exists a closed
almost complex manifold with sum of (rational) Betti numbers 3 is dimension 4, by Zhixu
Su [Su21] and Jiahao Hu’s [Hu21] independent resolutions of the case of dimensions equal to
a power of two left open in [AMI19].
Proof. Take the rational algebra Q[z]/(z*), where x is of degree 4, and take any rational
space with this as its cohomology, e.g. an 8(55 bundle over K(Q,4) where the degree 15
generator in S'° kills the fourth power of the generator in K(Q,4) in the Serre spectral
sequence. Choose the fundamental class so that 2° evaluates to 1. Note that necessarily
c1 = 0 rationally, and so we will have to satisfy two sets of congruences in order to produce
an almost complex manifold with this rational cohomology algebra. By [Sul77, p.317, (v)]
or [Mill79], any closed manifold with this rational cohomology is formal, and in particular
rationally homotopy equivalent to HIP?.

Taking into consideration that necessarily ¢; = c3 = ¢5 = 0 rationally, the first set of SU
congruences, coming from the condition z-7'd € Z for all z € Z[ey, es, . . .| (recall Theorem2.1),
come down to

10¢3 — 9eacy + 2c6 € 604807,
cocy + 2¢q € 2407,
—cg + 4cocy € 127,
¢y — 16cycy € 127,
ce € 47.

As before, it is understood that the products of Chern classes above have been paired with
the fundamental class. A

The second set of SU congruences, coming from the condition w - A(p;) € 2Z for all
w € Z[e}, eh, .. ] (recall Theorem [2.2), when translated into Chern classes, gives us

13 1 1
0182 — B720C2C4 + 30210 C6 € 22,
—%Cg&; — %CG S 2Z,
—%cg + §0204 € 27,
—%cg + %6264 + %cﬁ € 27,
The signature being 0 gives us, from the L-polynomial,
5¢3 — 36cycy — 68¢cs = 0.
Now, ¢y = ax for some rational number a. Since (a®z?, [X]) = a® must be an integer, a must
be an integer. Also, ¢, = ba? for some rational number b; note that it does not follow that b
is an integer, but let us look for b € Z regardless. Then, since y = 4, we have ¢4 = 4, and
simplifying the above congruences gives us the follow system of Diophantine equations:

—a® + 4ab € 247,
ab+ 8 € 19207,
5a — 36ab = 248.
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This system has a solution of a = —2, b = 4, and hence by Theorem [2.4] we obtain the desired
almost complex manifold. O
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