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Abstract. This paper proposes new protocols for two goals: authenticated key agreement and authen-
ticated key agreement with key confirmation in the asymmetric (public-key) setting. A formal model
of distributed computing is provided, and a definition of the goals within this model supplied. The
protocols proposed are then proven correct within this framework in the random oracle model. We em-
phasize the relevance of these theoretical results to the security of systems used in practice. Practical
implementation of the protocols is discussed. Such implementations are currently under consideration
for standardization [2, 3, 21].
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1 Introduction

The key agreement problem is stated as follows: two entities wish to agree on keying information in secret
over a distributed network. Since the seminal paper of Diffie and Hellman in 1976 [17], solutions to the key
agreement problem whose security is based on the Diffie-Hellman problem in finite groups have been used
extensively.

Suppose now that entity i wishes to agree on secret keying information with entity j. Each party desires
an assurance that no party other than i and j can possibly compute the keying information agreed. This
is the authenticated key agreement (AK) problem. Clearly this problem is harder than the key agreement
problem in which i does not care who (or what) he is agreeing on a key with, for in this problem i stipulates
that the key be shared with j and no-one else.

Several techniques related to the Diffie-Hellman problem have been proposed to solve the AK problem
[23, 18, 1]. However, no practical solutions have been provably demonstrated to achieve this goal, and this
deficiency has lead in many cases to the use of flawed protocols (see [26, 16, 22, 25]). The flaws have, on
occasion, taken years to discover; at best, such protocols must be employed with the fear that a flaw will
later be uncovered.

Since in the AK problem, i merely desires that only j can possibly compute the key, and not that j has
actually computed the key, solutions are often said to provide implicit (key) authentication. If i wants to make
sure in addition that j really has computed the agreed key, then key confirmation is incorporated into the key
agreement protocol, leading to so-called explicit authentication. The resulting goal is called authenticated key
agreement with key confirmation (AKC). It is a thesis of this paper that key confirmation essentially adds
the assurance that i really is communicating with j to the AK protocol. Thus the goal of key confirmation
is similar to the goal of entity authentication, as defined in [7]. More precisely, the incorporation of entity
authentication into the AK protocol provides i the additional assurance that j can compute the key, rather
than the (slightly) stronger assurance that j has actually computed the key.
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Practical solutions that employ asymmetric techniques to solve the AK and AKC problems are clearly
of fundamental importance to the success of secure distributed computing4. The motivation for this paper
stems in part from the recent successes of the ‘random oracle model’ [8] in providing practical, provably good
asymmetric schemes [8, 9, 11, 12, 27], and in part from the desire of various standards’ bodies (in particular
IEEE P1363 [21]) to lift asymmetric techniques in widespread use above the unsuccessful ‘attack-response’
design methodology. The goal of this paper is to make strides towards the provision of practical solutions
for the AK and AKC problems which are provably good — firstly by providing clear, formal definitions
of the goals of AK and AKC protocols, and secondly by furnishing practical, provably secure solutions in
the random oracle model. The model of distributed computing adopted appears particularly powerful, and
the definitions of security chosen particularly strong. The approach we take closely follows the approach
of [7], where provable security is provided for entity authentication and authenticated key transport using
symmetric techniques. Also relevant is the adaptation of techniques from [7] to the asymmetric setting found
in [14].

Roughly speaking, the process of proving security comes in five stages:

1. specification of model;

2. definition of goals within this model;

3. statement of assumptions;

4. description of protocol;

5. proof that the protocol meets its goals within the model.

We believe that the goals of AK and AKC currently lack formal definition. It is one of our central objectives
to provide such definitions.

We particularly wish to stress the important roles that appropriate assumptions, an appropriate model,
and an appropriate definition of protocol security play in results of provable security—all protocols are
provably secure in some model, under some definitions, or under some assumptions. Thus we believe that
the emphasis in such work should be how appropriate the assumptions, definitions, and model which admit
provable security are, rather than the mere statement that such-and-such a protocol attains provable security.
It is a central thesis of this work, therefore, that the model of distributed computing we describe models the
environment in which solutions to the AK and AKC problems are required, and that the definitions given
for the AK and AKC problems are the ‘right’ ones.

The remainder of the paper is organized as follows. §2 discusses the requirements of a secure key agree-
ment protocol. §3 describes the model of distributed computing adopted. §4 discusses AKC protocols and
introduces the protocols we propose. In §5 we turn our attention to the AK problem. §6 analyzes other prop-
erties of the protocols proposed to see whether the protocols attain additional desirable attributes. Finally,
practical issues are discussed in §7, and §8 makes concluding remarks.

2 Properties of Key Agreement Protocols

There is a vast literature on key agreement protocols (see [25] for a survey). Unlike other primitives, such
as encryption or digital signatures, it is not clear what constitutes an attack on a key agreement protocol.
A number of distinct types of attacks have been proposed against previous schemes, as well as a number of
less serious weaknesses. Therefore, before we can begin to analyze any protocol, it is necessary to identify
what attacks a protocol should withstand, and what attributes are desirable for a protocol to have.

First we identify two types of attack:

1. passive attacks, where an adversary attempts to prevent a protocol from achieving its goal by merely
observing honest entities carrying out the protocol;

2. active attacks, where an adversary additionally subverts the communications themselves in any way
possible: by injecting messages, intercepting messages, replaying messages, altering messages, and the
like.

4 Informally, by ‘distributed computing’ we refer to what we all think of as a computer network; that is a number of
separate machines which can only communicate over public channels.
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Clearly it is essential for any secure protocol to withstand both passive and active attacks, since an adversary
can reasonably be assumed to have these capabilities in a distributed network.

A number of desirable attributes of key agreement protocols have also been identified:

1. known session keys. A protocol still achieves its goal in the face of an adversary who has learned some
previous session keys.

2. (perfect) forward secrecy. If long-term secrets of one or more entities are compromised, the secrecy of
previous session keys is not affected.

3. unknown key-share. Entity i cannot be coerced into sharing a key with entity j without i’s knowledge,
i.e., when i believes the key is shared with some entity l 6= j.

4. key-compromise impersonation. Suppose i’s secret value is disclosed. Clearly an adversary that knows
this value can now impersonate i, since it is precisely this value that identifies i. However, it may be
desirable that this loss does not enable an adversary to impersonate other entities to i.

5. loss of information. Compromise of other information that would not ordinarily be available to an
adversary does not affect the security of the protocol. For example, in Diffie-Hellman type protocols,
security is not compromised by loss of αSiSj (where Si represents entity i’s long-term secret value).

6. message independence. Individual flows of a protocol run between two honest entities are unrelated.

Each attribute may be thought of as desirable for either AK or AKC protocols, or both. For example, we will
argue in §5 that flaws in AKC protocols that exploit known session keys are a much more serious weakness
than such flaws in AK protocols without key confirmation. Similarly, message independence is more desirable
in AK protocols; conceptually AKC protocols inherently contain some message dependence.

Finally we mention that in some applications it may be desirable to demonstrate that a protocol is
provably an agreement. Informally this means that neither party is able to affect the choice of key. In reality
however, one entity selects its contribution to the key before the other, therefore enabling the other entity
to test various selections of its contribution by calculating what the agreed key will be. To formalize this, we
could say that this trial-and-error procedure is effectively the best way for either entity to effect the choice
of key. While we will not discuss this further, heuristic arguments suggest that our protocols achieve such
an agreement property.

3 Model of Distributed Environment

Before formal statements of the problems can be made, we need a formal model to work in. First some
notation and language is introduced, and then the model itself is described. The model is a variant of the
Bellare-Rogaway model, described in [7, 10]. The description we provide of the model is necessarily terse; see
[7] for further details.

3.1 Set-up

{0, 1}∗ denotes the set of finite binary strings, and λ denotes the empty string. I = {1, . . . , N1} is the set
of entities in this environment (the adversary is not included as an entity). The number of entities being
dealt with is polynomial in the security parameter, k, so that N1 = T1(k) for some polynomial function T1.
A real-valued function ǫ(k) is negligible if for every c > 0 there exists kc > 0 such that ǫ(k) < k−c for all
k > kc. A function n(k) is non-negligible if it is not a negligible function.

Definition 1. A protocol is a pair P = (Π,G) of probabilistic polytime computable functions (polytime in
their first input):

Π specifies how (honest) players behave;
G generates key pairs for each entity.

The domain and range of these functions is as follows. Π takes as input:
1k — the security parameter;
i ∈ I — identity of sender;
j ∈ I — identity of intended recipient;
Ki,j — i’s key pair Ki together with j’s public value;
tran — a transcript of the protocol run so far (i.e. the ordered set of messages transmitted and

received by i so far in this run of the protocol).
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Π(1k, i, j,Ki,j , tran) outputs a triple (m, δ, κ), where:
m ∈ {0, 1}∗ ∪ {∗} is the next message to be sent from i to j (∗ indicates no message is sent);
δ ∈ {Accept, Reject, ∗} is i’s current decision (∗ indicates no decision yet reached);
κ is the agreed key.

Our protocols are described in terms of arithmetic operations in the subgroup generated by an element
α of prime order q in the multiplicative group ZZ

∗

p = {1, 2, . . . , p − 1}, where p is a prime. In each case,
an entity’s private value is an element Si of ZZ∗

q = {1, 2, . . . , q − 1}, and the corresponding public value is

Pi = αSi mod p 5, so that i’s key pair is Ki = (Si, Pi). Note that the protocols can be described equally
well in terms of the arithmetic operations in any finite group; of course, we would then have to convert our
security assumptions on the Diffie-Hellman problem to that group.
G takes as input the security parameter 1k and selects the triple of global parameters (p, q, α) to be

used by all entities by running GDH , the parameter generator for a Diffie-Hellman scheme, on input 1k. The
operation of GDH will be discussed in §4, when a Diffie-Hellman scheme is defined. G then picks a secret
value S for each entity by making N1 independent random samples from ZZ

∗

q , and calculates the public value

P = αS of each entity. G then forms a directory public-info containing the global parameters (p, q, α) and
an entry corresponding to each entity — the entry corresponding to entity i consists of the pair (i, Pi) of i’s
identifier and i’s public value. G outputs each entity’s key pair along with the directory public-info.

G is a technical description of the key generation process. It is a formal model designed to capture the
attributes of the techniques typically used to generate keys in a distributed environment. Of course, in real
life, each entity will usually generate key pairs itself and then get them certified by a Certification Authority.

A generic execution of a protocol between two players is called a run of the protocol. While a protocol is
formally specified by a pair of functions P = (Π,G), in this paper it is informally specified by the description
of a run between two arbitrary entities. Any particular run of a protocol is called a session. The word ‘session’
is often associated with anything specific to one particular execution of the protocol. For example, the keying
information agreed in the course of a protocol run is referred to as a session key. The individual messages
that form a protocol run are called flows.

3.2 Description of Model

Our adversary is afforded enormous power. She controls all communication between entities, and can at
any time ask an entity to reveal its long-term secret key. Furthermore she may at any time initiate sessions
between any two entities, engage in multiple sessions with the same entity at the same time, and in some
cases ask an entity to enter a session with itself.

With such a powerful model it is not clear what it means for a protocol to be secure. Informally, we say
that an AK protocol is secure if no adversary can learn anything about a session key held by an uncorrupted
entity i (an entity whose long-term keying material she has not revealed), provided that i has computed that
session key in the belief that it is shared with another entity j (who is also uncorrupted). Again informally,
we will say that an AKC protocol is secure if the protocol distributes a key just like an AK protocol, and
has the additional property that an accepting entity i is assured that it has been involved in a real-time
communication with j. Therefore to make an entity accept in an AKC protocol, the adversary effectively
has to act just like a wire.

We now formalize the above discussion.
An adversary, E, is a probabilistic polytime Turing Machine taking as input the security parameter 1k

and the directory public-info. E has access to a collection of oracles:

{Πs
i,j : i ∈ I, j ∈ I, s ∈ {1, . . . , N2}} .

Oracle Πs
i,j behaves as entity i carrying out a protocol session in the belief that it is communicating with j

for the sth time (i.e. the sth run of the protocol between i and j). Each Πs
i,j oracle maintains its own variable

tran to store its view of the run so far. E is equipped with a polynomial number of Πi,j oracles, so that
N2 = T2(k) for some polynomial function T2. Each Πs

i,j oracle takes as initial input the security parameter

1k, the key pair Ki assigned to entity i by G, a tran value of λ, and the directory public-info.

5 The operator ‘modp’ will henceforth be omitted.
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E is allowed to make three types of queries of its oracles, as illustrated in the table below.

Query Oracle reply Oracle update

Send(Πs
i,j , x) Πmδ(1k, i, j,Ki,j , tran.x ) tran ← tran.x .m

Reveal(Πs
i,j) Πκ(1k, i, j,Ki,j , tran) —

Corrupt(i,K) Ki Ki ← K

In the table, Πmδ denotes the first two arguments of Πs
i,j ’s output, and Πκ denotes the third. The Send query

represents E giving a particular oracle message x as input. E initiates a session with the query Send(Πs
i,j , λ),

i.e. by sending the oracle it wishes to start the session the empty string λ. Reveal tells a particular oracle to
reveal whatever session key it currently holds. Corrupt tells all Πs

i,j oracles, for any j ∈ I, s ∈ {1, 2, . . . , N2},
to reveal entity i’s long-term secret value to E, and further to replace Ki with any valid key pair K of E’s
choice. In addition, all oracles’ copies of i’s public value in the directory public-info are updated.

Our security definitions now take place in the context of the following experiment — the experiment of
running a protocol P = (Π,G) in the presence of an adversary E using security parameter k:

1. Toss coins for G, E, all oracles Πs
i,j , and any public random oracles;

2. Run G on input 1k;
3. Initialize all oracles;
4. Start E on input 1k and public-info.

Now when E asks oracle Πs
i,j a query, Πs

i,j calculates the answer using the description of Π. This definition
of the experiment associated with a protocol implies that when we speak of the probability that a particular
event occurs during the experiment, then this probability is assessed over all the coin tosses made in step 1
above.

The first step in defining the security of a protocol is to show that the protocol is ‘well-defined’. To assist
in this process we sometimes need to consider the following particularly friendly adversary. For any pair
of oracles Πs

i,j and Πt
j,i, the benign adversary on Πs

i,j and Πt
j,i is the deterministic adversary that always

performs a single run of the protocol between Πs
i,j and Πt

j,i, faithfully relaying flows between these two
oracles.

An oracleΠs
i,j has accepted ifΠδ(1k, i, j,Ki,j , tran) = Accept, it is opened if there has been a Reveal(Πs

i,j)
query, and it is corrupted if there has been a Corrupt(i, ·) query. trans

i,j will be used to denote the current
state of Πs

i,j ’s variable tran.
So far all we have done is describe the model. We are now ready to give formal definitions of the goals.

4 AKC

First, we’ll look at the AKC problem. The model described in §3 provides the necessary framework for our
security proofs; however, before we can prove anything about any protocol, a formal definition of the goal of
a secure AKC protocol must be given.

4.1 Definition of Security

As stated in the introduction, a central thesis to this paper is that the goal of an AKC protocol is essentially
identical to the goal of an authenticated key transport protocol [7, 14]. The intent of an AKC protocol is
therefore to assure two specified entities that they are involved in a real-time communication with each other.
Further, the protocol must provide the two entities with a key distributed uniformly at random from {0, 1}k.
No adversary should be able to learn any information about the agreed key held by an uncorrupted entity
i, provided the entity j that i believes it is communicating with is also uncorrupted.

Matching Conversations. To formalize the notion that two oracles are involved in a real-time commu-
nication, the concept of matching conversation is defined. For simplicity we focus on the case where R,
the number of flows in the protocol, is odd. The case where R is even is analogous. The idea of matching
conversations was first formulated in [13], refined in [18], and later formalized in [7].
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Fix an execution of an adversary E. For any oracle Πs
i,j its conversation can be captured by a sequence:

C = Cs
i,j = (τ1, α1, β1), (τ2, α2, β2), . . . , (τm, αm, βm) .

This sequence encodes that at time τ1 oracle Πs
i,j was asked α1 and responded with β1; and then at some

later time τ2 > τ1, the oracle was asked α2 and answered β2; and so forth, until finally, at time τm it was
asked αm and answered βm. Adversary E terminates without asking oracle Πs

i,j any more queries.
If oracle Πs

i,j has α1 = λ, it is called an initiator oracle; otherwise it is called a responder oracle.

Definition 2 [7]. Fix a number of flows R = 2ρ− 1 and an R-flow protocol P . Run P in the presence of an
adversary E and consider two oracles Πs

i,j , an initiator oracle, and Πt
j,i, a responder oracle, that engage in

conversations C and C ′ respectively.

1. C ′ is said to be a matching conversation to C if there exist τ0 < τ1 < · · · < τR−1 and α1, β1, . . . , βρ−1, αρ

such that C is prefixed by:

(τ0, λ, α1), (τ2, β1, α2), . . . , (τ2ρ−2, βρ−1, αρ)

and C ′ is prefixed by:
(τ1, α1, β1), (τ3, α2, β2), . . . , (τ2ρ−3, αρ−1, βρ−1) .

2. C is said to be a matching conversation to C ′ if there exist τ0 < τ1 < · · · < τR and α1, β1, . . . , βρ−1, αρ

such that C ′ is prefixed by:

(τ1, α1, β1), (τ3, α2, β2), . . . , (τ2ρ−3, αρ−1, βρ−1), (τ2ρ−1, αρ, ∗)

and C is prefixed by:
(τ0, λ, α1), (τ2, β1, α2), . . . , (τ2ρ−2, βρ−1, αρ) .

If C is a matching conversation to C ′ and C ′ is a matching conversation to C, then Πs
i,j and Πt

j,i are said
to have had matching conversations.

Roughly speaking, this definition captures when the adversary E merely acts like a wire. In the first case,
E faithfully carries all Πs

i,j ’s messages (except possibly the last) to Πt
j,i, and then relays the replies back.

The second case implies the first, but in addition Πs
i,j ’s last message is relayed to Πt

j,i.

Protocol Security. Matching conversations now provide the necessary formalism to define the assurance
provided to entity i during an AKC protocol that it has been involved in a real-time communication with
entity j. Let No-MatchingE(k) denote the event that, when protocol P is run against adversary E, there
exists an oracle Πs

i,j which accepted but there is no oracle Πt
j,i which has engaged in a matching conversation

to Πs
i,j . Further, we require i, j 6∈ C (where C denotes the set of entities corrupted by the adversary E during

the experiment).
The notion that no adversary can learn information about session keys is formalized along the lines of

polynomial indistinguishability. Specifically at the end of its execution, the adversary should be unable to
gain more than a negligible advantage when it tries to distinguish the actual key held by an uncorrupted
entity from a key sampled at random from {0, 1}k.

Therefore we make the following addendum to the experiment. Call a Πs
i,j oracle fresh if it has accepted,

neither i nor j has been corrupted, it remains unopened, and there is no opened oracle Πt
j,i with which it

has had a matching conversation. After the adversary has asked all the queries it wishes to make, E selects
any fresh Πs

i,j oracle. E asks this oracle a single new query:

Test(Πs
i,j) .

To answer the query, the oracle flips a fair coin b← {0, 1}, and returns the session key κs
i,j if b = 0, or else

a random key sampled from {0, 1}k if b = 1. The adversary’s job is now to guess b. To this end, E outputs
a bit Guess. Let Good-GuessE(k) be the event that Guess = b. Then we define:

advantageE(k) = |Pr[Good-GuessE(k)]− 1
2 | .
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Definition 3. A protocol P = (Π,G) is a secure AKC protocol if:

1. In the presence of the benign adversary on Πs
i,j and Πt

j,i, both oracles always accept holding the same

session key κ, and this key is distributed uniformly at random on {0, 1}k;

and if for every adversary E:

2. If uncorrupted oracles Πs
i,j and Πt

j,i have matching conversations then both oracles accept and hold the
same session key κ;

3. The probability of No-MatchingE(k) is negligible;
4. advantageE(k) is negligible.

The first condition says that in the presence of a benign adversary, oracles always accept holding the
same, randomly distributed key. The second says that in the presence of any adversary if two entities behave
correctly, and the transmissions between them are not tampered with, then both accept and hold the same
key. The third says that essentially the only way for any adversary to get an uncorrupted entity to accept
in a run of the protocol with any other uncorrupted entity is by relaying communications like a wire. The
fourth says that no adversary can learn any information about a session key held by a fresh oracle.

This definition is identical to the definition of an authenticated key transport protocol as defined in
[7]. While it seems strange to suggest that the definitions of security for two goals that have traditionally
been regarded as distinct should in fact be identical, the justification for this security definition for AKC is
straightforward. It is intuitively what we require from an AKC protocol. Further, a review of the literature
reveals that a number of the attacks proposed on previous protocols can be explained by the observation
that the protocols concerned do not meet this definition.

4.2 Description of Primitives

Before we can specify a particular protocol, the various primitives our protocols employ must be described
and the security of each of these primitives defined. The two primitives used are message authentication codes
(MACs) and Diffie-Hellman schemes (DHSs). The proposed protocols use MACs to provide key confirmation
because this seems to be the least restrictive primitive to employ; in particular, a MAC is unlikely to be
subject to the same export restrictions as an encryption scheme. Of course, some applications may wish to
use another primitive to achieve confirmation. This is perfectly realistic: for example, if the agreed session
key is later to be used for encryption, it seems sensible to employ an encryption scheme to achieve key
confirmation, rather than waste time implementing a MAC.

Message Authentication Codes. Provably secure message authentication codes have been discussed in
[6, 5, 4]. We restrict attention to MACs that have key space uniformly distributed on {0, 1}k.

Definition 4 [4]. A message authentication code is a deterministic polytime algorithm MAC (.)(·). To au-
thenticate a message m, an entity with key κ′ computes:

(m, a) = MAC κ′(m) .

The authenticated message is the pair (m, a); a is called the tag on m. To verify (m, a) is indeed an authen-
ticated message, any entity with key κ′ checks that MAC κ′(m) does indeed equal (m, a).

An adversary F (of the MAC) is a probabilistic polytime algorithm which has access to an oracle that
computes MACs under a randomly chosen key κ′. The output of F is a pair (m, a) such that m was not
queried of the MACing oracle.

Definition 5 [4]. A MAC is a secure MAC if for every adversary F of the MAC, the function ǫ(k) defined
by

ǫ(k) = Pr[κ′ ← {0, 1}k; (m, a)← F : (m, a) = MAC κ′(m)]

is negligible.
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Roughly speaking, this means a MAC is secure only if the probability of forging a valid tag on any message
that has not yet been authenticated using a call to the MACing oracle is negligible. Thus we require a MAC
to withstand an adaptive chosen-message attack. Note that since the MACing algorithm is deterministic,
each message m has a unique tag a under κ′. This is important in conjunction with matching conversations
— it means that an adversary who sees an authenticated message (m, a) is unable to alter a to another valid
tag a′ for m.

Diffie-Hellman schemes. The assumption that the Diffie-Hellman problem is hard is common in the
cryptographic literature. In order to formalize what we mean by ‘the Diffie-Hellman problem is hard’, we
first define a Diffie-Hellman scheme.

Definition 6. A Diffie-Hellman scheme (DHS) is a pair of polytime algorithms, (GDH , calc), the first being
probabilistic. On input 1k, GDH generates a triple of global parameters (p, q, α). p and q are primes such
that q divides p − 1, and α is an element of order q in ZZ

∗

p. calc exponentiates in ZZ
∗

p — it takes as input
((p, q, α), g, x) where the triple (p, q, α) has been generated by GDH , g is in ZZ

∗

p, and x is an integer satisfying
0 ≤ x ≤ p− 2. calc outputs gx mod p.

An adversary F (of the DHS) is a probabilistic polytime algorithm which takes as input a parameter set
(p, q, α) generated using GDH , and a pair (αR1 , αR2) for R1 and R2 chosen independently at random from
ZZ

∗

q . The output of F is an element g of ZZ∗

p.

Definition 7. A secure DHS is one for which the function ǫ(k) defined by

ǫ(k) = Pr[(p, q, α)← GDH (1k);R1, R2 ← ZZ
∗

q ; g ← F ((p, q, α), (αR1 , αR2)) : g = αR1R2 ]

is negligible for every adversary F .

The Diffie-Hellman problem is hard if there exists a secure Diffie-Hellman scheme. This formal definition
corresponds precisely with our intuitive notion that the Diffie-Hellman problem is ‘hard’ (in subgroups of
prime order) — i.e. it is extremely unlikely that anyone can guess αR1R2 given only αR1 and αR2 .

The proofs in this paper assume that i does not enter protocol runs with itself. This condition can be
removed provided the DHS being employed is also secure against an adversary that takes as input a pair
(αR1 , αR1) rather than (αR1 , αR2). Call a secure DHS ∗-secure if it remains secure against this modified
opponent. Work done by Maurer and Wolf [24] suggests that secure DHSs and ∗-secure DHSs are equivalent.

Random Oracles. The security proofs of this paper take place in the ‘random oracle model’ [8]. All parties
involved in the protocols are supplied with a ‘black-box’ random function

H(·) : {0, 1}∗ −→ {0, 1}k .

All random oracles in this paper will map finite strings to strings of length k. Following [8], 2∞ will denote
the set of all random oracles. It is often convenient to think of H defined in terms of its coin tosses in
the following way. When H is queried for the first time, say on string x, it returns the string of length k

corresponding to its first k coin tosses as H(x). When queried with a second string, say x′, first H compares
x and x′. If x′ = x, H again returns its first k coin tosses H(x). Otherwise H returns its second k tosses as
H(x′). And so on.

Of course, a random oracle is a theoretical construct designed to facilitate security analysis. In instan-
tiations, H will be modeled by a hash function H (or some more complex ‘key derivation function’ [21]).
We emphasize that the security proofs take place in the random oracle model, and that instantiating a ran-
dom oracle using a specific function is a heuristic step, known as ‘the random oracle paradigm’. We refer the
reader to [8] for further discussion of the ‘random oracle paradigm’; here we merely echo the assertion of those
authors that ‘it is important to neither over-estimate nor under-estimate what the random-oracle paradigm
buys you in terms of security guarantees’. Also [12] contains an excellent discussion of the implications of
‘provable security in the random oracle model’.
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4.3 Protocol 1

We can now describe the first AKC protocol proposed. It is represented graphically in Figure 1. Use ∈R
to denote an element chosen independently at random, and commas to denote a unique encoding through
concatenation (or any other unique encoding).H1 andH2 represent independent random oracles. When entity
i wishes to initiate a run of P with entity j, i selects Ri ∈R ZZ

∗

q and sends αRi to j. On receipt of this string, j

checks that 2 ≤ αRi ≤ p−1 and (αRi)q = 1, then chooses Rj ∈R ZZ
∗

q , and computes αRj and κ′ = H1(α
SiSj ).

Finally, j uses κ′ to compute MAC κ′(2 , j , i , αRj , αRi ), and sends this authenticated message to i. (Recall
that MAC κ′(m) represents the pair (m, a), not just the tag a.) On receipt of this string, i checks that the
form of this message is correct, and that 2 ≤ αRj ≤ p − 1 and (αRj )q = 1. i then computes κ′ and verifies
the authenticated message it received. If so, i accepts, and sends back to j MAC κ′(3 , i , j , αRi , αRj ). Upon
receipt of this string, j checks the form of the message, verifies the authenticated message, and accepts. Both
parties compute the agreed session key as κ = H2(α

RiRj ). If at any stage, a check or verification performed
by i or j fails, then that party terminates the protocol run, and rejects.

αRi

j(Pj ,Sj)

MACκ′(3, i, j, αRi , αRj )

MACκ′(2, j, i, αRj , αRi)

κ′ = H1(α
SiSj )

κ = H2(α
RiRj )

κ′ = H1(α
SiSj )

κ = H2(α
RiRj )

i(Pi,Si)

Fig. 1. Protocol 1

Theorem8. Protocol 1 is a secure AKC protocol provided the DHS and MAC are secure and H1 and H2

are independent random oracles.

The proof of this theorem appears in Appendix A.

Comments. In practice, entity i may wish to append its identity to the first flow of Protocol 1. Doing so in
no way affects the security proof. We omit this identity because certain applications may desire to identify
the entities involved at the packet level rather than the message level — in this instance, identifying i again
is therefore superfluous.

Note that entities use two distinct keys in Protocol 1 — one key for confirmation, and a different key as
the session key for subsequent use. This separation appears important. In particular, the common practice
of using the same key both for confirmation and as the session key is clearly dangerous if this means the
same key is used by more than one primitive.

It is easy to show that the probability that a Πs
i,j oracle with i, j 6∈ C has a matching conversation with

more than one Πj,i oracle in a run of Protocol 1 is negligible (the same is true of all the protocols described
in this paper).

Protocol 1 is different from most proposed AKC protocols in the manner that entities employ their long-
term secret values and session-specific secret values. Most proposed protocols use both long-term secrets and
short-term secrets in the formation of all keys. In Protocol 1, long-term secrets and short-term secrets are used
in quite independent ways. Long-term secrets are used only to form a session-independent confirmation key
and short-term secrets only to form the agreed session key. Conceptually this approach has both advantages
and disadvantages over more traditional techniques. On the plus side, the use of long-term keys and short-
term keys is distinct, serving to clarify the effects of a key compromise — compromise of a long-term secret
is fatal to the security of future sessions, and must be remedied immediately, whereas compromise of a
short-term secret effects only that particular session. On the negative side, both entities must maintain a
long-term shared secret key κ′ in Protocol 1.

Separation of an AK phase of this AKC protocol appears impossible.
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4.4 Protocol 2

Protocol 2 is an AKC protocol designed to deal with some of the disadvantages of Protocol 1. It is represented
graphically in Figure 2. The actions performed by entities i and j are similar to those of Protocol 1, except
that the entities use both their short-term and long-term values in the computation of both the keys they
employ. Specifically, the entities use κ′ = H1(α

RiRj , αSiSj ) as their MAC key for this session, and κ =
H2(α

RiRj , αSiSj ) as the agreed session key.

αRi

j(Pj ,Sj)

MACκ′(3, i, j, αRi , αRj )

MACκ′(2, j, i, αRj , αRi)
i(Pi,Si)

κ′ = H1(α
RiRj , αSiSj )

κ = H2(α
RiRj , αSiSj )

κ′ = H1(α
RiRj , αSiSj )

κ = H2(α
RiRj , αSiSj )

Fig. 2. Protocol 2

Theorem9. Protocol 2 is a secure AKC protocol provided the DHS and MAC are secure and H1 and H2

are independent random oracles.

The proof of this theorem appears in Appendix B.

Comments. Unlike Protocol 1, both long-term secrets and both short-term secrets are used in Protocol 2
to form each key. While this makes the effect of a compromise of one of these values less clear, it also means
that there is no long-term shared key used to MAC messages in every session between i and j. However,
the two entities do still share a long-term secret value αSiSj . This value must therefore be carefully guarded
against compromise, along with Si and Sj themselves. Conceptually it is possible to separate the AK phase
and the key confirmation phase in Protocol 2. This will be the subject of §5.

5 AK

Definition of Security. In the past, defining the goal of an AK protocol has proved difficult. The clarity
of the definition provided for AKC protocols (Definition 3 in §4) allows us to separate out a definition of
security for AK protocols. Informally, we require an AK protocol to distribute a key to two specified entities
in such a way that no adversary can learn any information about the agreed key. This is translated into the
formal language of our model as follows.

Definition 10. A protocol P is a secure AK protocol if:

1. In the presence of the benign adversary on Πs
i,j and Πt

j,i, both oracles always accept holding the same

session key κ, and this key is distributed uniformly at random on {0, 1}k;

and if for every adversary E:

2. If uncorrupted oracles Πs
i,j and Πt

j,i have matching conversations then both oracles accept and hold the
same session key κ;

3. advantageE(k) is negligible.

Conditions 1 and 2 say that a secure AK protocol does indeed distribute a key of the correct form.
Condition 3 says that no adversary can learn any information about the key held by a fresh oracle.

Protocol 3. Our first attempt at specifying a secure AK protocol tries to separate an AK phase from
Protocol 2. Figure 3 contains a graphical representation of the actions taken by i and j in a run of Protocol 3.
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αRi

i(Pi,Si) j(Pj ,Sj)
αRj

κ = H(αRiRj , αSiSj )κ = H(αRiRj , αSiSj )

Fig. 3. Protocol 3
Theorem11. Protocol 3 is a secure AK protocol as long as E makes no Reveal queries, and provided that
the DHS and MAC are secure and H is a random oracle.

The proof of this theorem appears in Appendix C.

Comments. To see that Protocol 3 is not a secure AK protocol if an adversary can reveal unconfirmed
session keys, notice the following attack. E begins two runs of the protocol, one with Πs

i,j , and one with

Πu
i,j . Suppose Πs

i,j sends αRi , and Πu
i,j sends αR′

i . E now forwards αRi to Πu
i,j , and αR′

i to Πs
i,j . E can now

discover the session key κ = H(αRiR
′

i , αSiSj ) held by Πs
i,j by revealing the (same) key held by Πu

i,j .
Theorem 11 really says that care must be taken when separating authenticated key agreement from key

confirmation. Protocol 3 above is not a secure AK protocol in the full model of distributed computing we’ve
been adopting, but can nonetheless be turned into a secure AKC protocol, as in Protocol 2. At issue here
is whether it is realistic to expect that an adversary can learn keys that have not been confirmed. Indeed,
studying the list of suggested reasons for session key compromise in [16], it can be seen that the majority of
the scenarios discussed lead to the disclosure of confirmed keys.

Therefore, although in this paper we have tried to separate the goals of AK and AKC, the principle that
Theorem 11 suggests is that no key agreed in an AK protocol should be used without key confirmation.
The only reason we have endeavored to separate authenticated key agreement from key confirmation is
to allow flexibility in how a particular implementation chooses to achieve key confirmation. For example,
architectural considerations may require key agreement and key confirmation to be separated — some systems
may provide key confirmation during a ‘real-time’ telephone conversation subsequent to agreeing a session
key over a computer network, while others may instead prefer to carry out confirmation implicitly by using
the key to encrypt later communications.

The reason that we have specified the use of a subgroup of prime order by the DHSs in this paper is to
avoid various known session key attacks on AK protocols that exploit the fact that a key may be forced to
lie in a small subgroup of ZZ∗

p. Note however that this condition is not necessary for the security proofs to
work — from the point of view of the security proofs, we could equally well have made assumptions about
DHSs defined in ZZ

∗

p rather than a subgroup of ZZ∗

p.
Theorem 11 testifies to the strength of our definition for security of an AK protocol. Notice in particular

that, as is the case with Protocol 3, many previous AK protocols (e.g., those of [23]) do not contain asymmetry
in the formation of the agreed key to distinguish which entity involved is the protocol’s initiator, and which
is the protocol’s responder. Such protocols certainly will not meet the security requirements of Definition 10.

Protocol 4. We speculate that the following protocol meets the full rigor required by Definition 10. Again,
instead of describing the actions of i and j verbally, we illustrate these actions in Figure 4.

αRi

i(Pi,Si) j(Pj ,Sj)
αRj

κ = H(αSiRj , αSjRi)κ = H(αSiRj , αSjRi)

Fig. 4. Protocol 4

Conjecture 12. Protocol 4 is a secure AK protocol provided the DHS and MAC are secure and H is a
random oracle.
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Comments. While at first glance, Protocol 4 may look almost identical to the well-known MTI protocol
[23], where the shared value computed is αSiRj+SjRi , notice the following important distinction. Entity i

calculates a different key in Protocol 4 depending on whether i believes it is the initiator or responder. In
the first case, i computes κ = H(αSiRj , αSjRi), and in the second case κ = H(αSjRi , αSiRj ). As we remarked
above, such asymmetry is essential in a secure AK protocol under Definition 10. Of course, such asymmetry
is not always desirable — a particular environment may require that i calculate the same key no matter
whether i is the initiator or responder. In such a case, Definition 10 would require (slight) modifications.

If indeed it can be shown that Protocol 4 is a secure AK protocol, then we imagine it can be turned into
a secure AKC protocol in the same spirit as Protocol 2.

6 Attributes of Protocols

In this section, we discuss which of the attributes described in §2 the proposed protocols possess.

6.1 Known Session Keys

The Reveal query is designed to capture the notion that an adversary may learn previous session keys — in
the model of distributed computing adopted, E may learn previous session keys by simply asking for them.
The security definitions we have given for the AK and AKC problems demand that no adversary be able
to learn any information about the session key held by a fresh oracle even when the adversary employs its
Reveal query to learn other session keys. Any protocol for either AK or AKC which is secure under the
definitions given will therefore resist known session key attacks.

6.2 Forward Secrecy

Intuitively, both the AKC protocols proposed achieve forward secrecy. Consider, for example, Protocol 1.
Suppose entity i’s secret value Si is compromised at some time τ . Protocol 1 is a secure AKC protocol, so i

is assured that it engaged in a matching conversation with entity j during the agreement of any session key,
provided this agreement took place before time τ . Therefore such an agreed key is of the form H(αRiRj )
for some Ri and Rj chosen at independently at random by entities i and j — this means that an adversary
still faces the Diffie-Hellman style problem of working out αRiRj from αRi and αRj to learn any information
about the key. The fact that E later learns Si is clearly of no help to her.

Note that the above argument includes the scenario in which E has learned some previous session keys
as well as compromising Si at some time. Of course, by this we mean that E still faces a tough problem
learning any session key agreed before time τ that she has not discovered through other means (such as the
Reveal query).

6.3 Unknown Key-Share

First we discuss the relevance of the unknown key-share attribute. Suppose E can coerce an entity i into
holding session key κ in the belief that it is shared with entity e, and also coerce j to hold κ in the belief
that it is shared with i. Now e can claim to i that any communications j sent to i using κ (e.g., a MACed
message) in fact originated with e. Also, e can decrypt any messages that j encrypts using κ and sends to
i. This kind of ‘attack’ has been proposed against a number of previous schemes. We propose this attribute
for the first time as a ‘generic’ class of attacks.

Prevention of these unknown key-shares has also been built into the model that we’ve adopted. For
suppose entity i can be coerced into sharing a key with e, when really i shares the key with j. In the model
of distributed computing, this corresponds to a Πi,e oracle and a Πj,i oracle holding the same session key.
An adversary E could therefore reveal the key held by Πi,e, pick Πj,i to ask its Test query, and in this way
defeat the AK or AKC protocol.

6.4 Key-Compromise Impersonation

Protocols 1, 2, and 3 fail to achieve the key-compromise impersonation attribute. That is, if entity i discloses
its secret value Si then an adversary E is not just able to impersonate i to any entity, but also can impersonate
any entity j to i, since in this event E is able to compute the ‘secret value’ component αSiSj involved in a run
of the protocol between i and j. Procotol 4, on the other hand, would appear to possess the key-compromise
attribute.

12



6.5 Loss of Information

Is it possible that loss of some information other than i’s secret value can compromise the protocols? Un-
fortunately this is the case in each of Protocols 1, 2, and 3, since loss of αSiSj certainly allows an adversary
to impersonate i to j and vice versa. Thus none of these protocols remains secure if this supplementary
information is lost. It is not clear what effect loss of other supplementary information might have — for
example, if entity i were to inadvertently disclose some bits of Si.

6.6 Message Independence

Both the AK protocols proposed attain message independence — that is in a bona fide run of the protocols,
the individual flows are unrelated.

The AKC protocols, on the other hand, do not achieve message independence. This is unsurprising, since
by definition the goal of key confirmation is similar to the goal of entity authentication. Flows sent by j in
a protocol with such a goal necessarily contain information specific to this particular run which has been
selected by i in order to prevent replay attacks. Thus while our AKC protocols do not achieve message
independence, it appears that such a property is inherent to all protocols that achieve key confirmation.

7 Practicalities

7.1 ‘Real-World’ Implications

What are the implications of these theoretical results to the ‘real world’?
Until the recent advent of ‘practice-oriented provable security’, systems which offered any degree of

provable security were impractical due to the large computational overheads incurred by their operation. As
in [8, 9, 11, 27], this is not the case here. All the protocols in this paper are examples of the ‘unified model’
of key agreement, which it is our task to present. Practical implementations of the unified model are as
efficient as any implementations used in practice; indeed the unified model is currently under consideration
for standardization [2, 3, 21].

However, while the results of this paper ensure theoretical correctness of the protocols, the theoretical
proofs take place in the random oracle model. Therefore the security of a practical implementation of any of
the protocols relies on the ability of a hash function to instantiate a random oracle. The potential for such
an instantiation to introduce weaknesses has led to criticism of the random oracle paradigm. Let us address
some common concerns.

Firstly, as with all proofs in the random oracle model, our results guarantee security against generic
attacks — attacks which do not exploit any special properties of the hash function instantiating the random
oracle. It is precisely such generic attacks that have caused the downfall of many previous key agreement
protocols. Let us therefore emphasize that such attacks are prohibited by our results within the model of
distributed computing employed.

Secondly, let’s consider the typical cost of generic attacks on key agreement protocols. In the case of
signature and encryption schemes which employ hash functions, generic attacks usually carry a high com-
putational overhead, so it is unclear whether a non-generic attack that exploits the structure of the hash
function used will involve as much work as a generic attack. In contrast, generic attacks on key agreement
protocols typically involve almost no computational burden — non-generic attacks on the other hand will
require the traditionally greater computational expense of exploiting a weakness in the hash function being
used.

Thirdly, let’s examine the strength of the requirements made on the instantiation of the random oracle in
implementations of the protocols. All the protocols essentially employ a random oracle mapping fixed-length
inputs to fixed-length outputs. Therefore the security of the hash function is not stretched by the need to
produce arbitrary length outputs. In most implementations a single application of the hash function chosen
will produce sufficiently many output bits. Furthermore, the use of the hash function is likely to be infrequent,
since the hash function needs to be used only once or twice each time a new key is agreed. This is in contrast
to the use of hash functions in practical implementations of provably secure signature schemes or encryption
schemes, where the frequent need to use the hash function makes its efficiency vital. In this instance, an
implementation may choose to use a less efficient, but (supposedly) more secure hash function construct.
As a concrete suggestion, hash functions and MACs whose construction employs an underlying block cipher
could be chosen. Using such instantiations, the security of practical implementations of the protocols can be
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made to rest on, say, the security of DES and the Diffie-Hellman problem, both cryptographic schemes that
have withstood 20 years of extensive investigation.

Finally, we must discuss the justification for using a hash function in a key agreement protocol (aside from
its ability to facilitate provable security in the random oracle model). Traditionally, the most significant bits
of a Diffie-Hellman number have been used as the agreed session key. While recent work [15] has shown that
some of the most significant bits of a Diffie-Hellman number are as hard to compute as the entire number, it is
not clear what this exact number of hard bits is. Moreover, it is not known whether these most significant bits
are pseudorandom. Thus it seems sensible that a hash function should be used to ‘distill’ pseudorandomness
from the whole Diffie-Hellman number. Hashing in this way also renders known key attacks less damaging
— for while it may be unclear whether revealing previous Diffie-Hellman numbers calculated using Si and
Sj enables information about Si and Sj or other session keys calculated using Si and Sj to be inferred, the
one-way property of hash functions adds to any confidence one may have that disclosure of previous session
keys gives nothing away when the agreed value has been hashed to form the session key.

In summary, when employing the proposed protocols in practice, an implementor is assured that no subtle
flaws exist in the form of the protocols, and further that an attack on their implementation is likely to incur
the heavy computational burden associated with breaking one of the underlying cryptographic primitives.
No currently employed protocol can give such assurances, and as discussed in §1, a large number of flaws
have been found in the protocols previously proposed. Thus, not only do our protocols provably achieve
the goals of AK and AKC in the random oracle model, but in addition, practical implementations of the
protocols that employ a hash function to instantiate the random oracle offer superior security assurances
compared to any currently in use.

7.2 Implementation Issues

This subsection discusses some practical issues, such as efficiency, that may arise when implementing the
protocols.

One issue is how to instantiate the random oracles. SHA-1 [20] should provide sufficient security for most
applications. It can be used in various ways to provide instantiations of independent random oracles. For
example, an implementation of Protocol 1 may choose to use:

H1(x) := SHA-1(01, x) and H2(x) := SHA-1(10, x) .

A particularly efficient instantiation of the random oracles used in Protocol 2 is possible using SHA-1
or RIPEMD-160 [19]. Suppose 80-bit session keys and MAC keys are required. Then the first 80 bits of
SHA-1(αRiRj , αSiSj ) can be used as κ′ and the second 80 bits used as κ. Of course, such efficient implemen-
tations may not offer the highest conceivable security assurance of any instantiation.

It is easy to make bandwidth savings in implementations of the AKC protocols. Instead of sending the
full authenticated messages (m, a) in flows 2 or 3, in both cases the entity can omit much of m, leaving the
remainder of the message to be inferred by its recipient.

In some applications, it may not be desirable to carry out a protocol run each time a new session key is
desired. Considering specifically Protocol 2 by way of example, entities may wish to compute the agreed key
as:

H2(α
RiRj , αSiSj , counter) .

Then instead of running the whole protocol each time a new key is desired, most of the time the counter is
simply incremented. Entities need then only resort to using the protocol itself every now and then to gain
some extra confidence in the ‘freshness’ of the session keys they’re using.

In Protocols 1, 2, and 3, performance and security reasons may make it desirable to use a larger (and

presumably more secure) group for the static Diffie-Hellman number (α
SiSj

1 ) than for the ephemeral Diffie-

Hellman number (α
RiRj

2 ) calculation. The larger group is desirable because the static number will be used
more often. The static numbers may be cached to provide a speed up in session key calculation.

Finally, note that a practical instantiation of G using certificates should check knowledge of the secret value
before issuing a certificate on the corresponding public value. We believe that this is a sensible precaution
in any implementation of a Certification Hierarchy.
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8 Conclusions and Further Work

This paper has proposed formal definitions of secure AK and AKC protocols within a formal model of
distributed computing. The ‘unified model’ of key agreement has been introduced, and several variants of
this model have been demonstrated to provide provably secure AK and AKC protocols in the random oracle
model. Strong evidence has been supplied that practical implementations of the protocols also offer superior
security assurances than those currently in use, while maintaining similar computational overheads.

The definitions we have suggested for secure AK and AKC protocols are new, and the first question to
ask is: are these the correct definitions for AK and AKC? We have supplied justification for the definitions
we’ve chosen; further debate of the appropriateness of these definitions is clearly required.

A number of other questions are suggested by our results. Is the model of distributed computing adopted
ideal? What impact do security proofs have on protocols? Can these methods be applied to protocols with
different security goals? For which other goals would implementors like to see proven secure solutions? At a
more concrete level: is it possible to remove, or at least minimize, the random oracle assumptions on which
the security proofs rely? Can the reductions in the proofs be used to obtain meaningful measures of exact
security [11]?
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A Proof of Theorem 8

Theorem 8 Protocol 1 is a secure AKC protocol provided the DHS and MAC are secure and H1 and H2

are independent random oracles.

Proof. We deal with each condition of Definition 3 in turn.

Conditions 1 and 2: The first two conditions follow immediately from the description of P and the as-
sumption that H2 is a random oracle.

Condition 3: Let’s turn to the third condition. Consider an arbitrary adversary E, and suppose, by way
of contradiction, that Pr[No-MatchingE(k)] is non-negligible. We say that E succeeds if at the end of E’s
experiment, there exists an oracle Πs

i,j (i, j 6∈ C) which has accepted but no Πj,i oracle has had a matching
conversation to Πs

i,j . Further in this case we say that E has succeeded against Πs
i,j . Hence, by assumption:

Pr[E succeeds] = n(k)

for some non-negligible n(k) by assumption. Now call Ak the event that, during E’s experiment, there exists
a pair i, j ∈ I with i, j 6∈ C for which αSiSj is queried of H1 either by E or by any oracle except Πi,j or Πj,i

oracles.

Case 1: Suppose that Pr[Ak] = n1(k) is non-negligible. In this case we construct from E an adversary F of
the DHS that wins its experiment with non-negligible probability.
F ’s operation: F takes as input (p, q, α) generated by GDH (1k) and (αS′

, αS′′

) for S′, S′′ chosen at random
from ZZ

∗

q , and must try to guess αS′S′′

(cf. Definition 7).
F picks at random a pair i, j ∈ I, guessing that E or an oracle other than a Πi,j or Πj,i oracle will query

H1 with αS′

iSj . F must perform E’s experiment. Instead of running G, F makes its own input (p, q, α) the
global parameters to be used by P , and chooses all entities’ secret values at random itself, except for i’s and
j’s. F makes αS′

i’s public value (so Si = S′) and αS′′

j’s public value (so Sj = S′′), forms the directory
public-info, and starts E.

F must answer all the oracle queries involved in E’s experiment. F answers all distinct H1 and H2 queries
at random (just as a real random oracle would). F answers all E’s Reveal queries as specified by Π, all E’s
Send queries as specified by Π except for Send queries to Πi,j and Πj,i oracles, and all E’s Corrupt queries
as specified by Π provided neither i nor j is being corrupted.
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When E asks aΠi,j orΠj,i oracle a Send query, instead of computingH1(α
SiSj ) and using this as the long-

term MAC key shared by the two entities, F picks a key κ′ at random from {0, 1}k to ‘represent’ H1(α
SiSj )

(of course, F doesn’t know αSiSj — that’s why there’s a problem!). F then uses κ′ when determining these
oracles responses.

If E asks a Corrupt query to i or j then F gives up.
Now let T3(k) denote a polynomial bound on the number of distinct H1 calls made by E and its oracles

during the experiment. F picks l ∈R {1, . . . , T3(k)}, guessing that the lth distinct call made to H1 by E or
any oracle (except for Πi,j or Πj,i oracles) will be on αSiSj . When the lth distinct H1 call is made (say on
g), F stops and outputs g as its guess at αSiSj .

If E halts before the lth distinct H1 query is made, F gives up.
Only one problem remains. H1 may have been queried on αSiSj at some time before the lth distinct H1

call. In this case, F will have answered the call at random, and its answer may have been in contradiction
to the key κ′ it’s using to represent H1(α

SiSj ). The problem is that E is not guaranteed to halt in this
eventuality. To sidestep this potential problem, let T4(k) denote a polynomial bound on E’s runtime under
ordinary circumstances. If F runs E for longer than T4(k), F gives up, concluding that it must have missed
an H1 query on αSiSj .
Analysis: Observe that if the lth distinct H1 query made by E or its oracles is on αSiSj , then F certainly
wins its experiment. We conclude that the probability F outputs the correct value g = αSiSj is at least:

n1(k)

(T1(k))2T3(k)

which is non-negligible. This contradicts the assumed security of the DHS. We conclude that n1(k) is negli-
gible.

Case 2: Let n2(k) be the probability that E succeeds against at least one initiator oracle, and n3(k) be the
probability that E succeeds against at least one responder oracle but no initiator oracles. We have:

n(k) = n2(k) + n3(k) .

So there are two subcases to consider.

Case 2(a): Suppose n2(k) is non-negligible. In this case we construct from E an adversary F of the MAC.

F ’s operation: F has access to a MACing oracle that computes MACs under a key κ′′ which was chosen at
random from {0, 1}k. F ’s task is to compute a valid authenticated message (m, a), where m was not queried
of its oracle (cf. Definition 5).

F performs E’s experiment. F runs G on input 1k — G chooses a parameter set (p, q, α) and secret values
for all the entities. G calculates all public values and forms the directory public-info.

F now starts E on input 1k and public-info. F picks i, j ∈R I and s ∈R {1, . . . , T2(k)}, guessing that E
will succeed against initiator Πs

i,j oracle.
F answers all E’s queries itself. To answer queries of H1 and H2, F itself picks replies at random, with

the exception of H1 queries on αSiSj (note that F can compute αSiSj ). If H1 is queried on αSiSj by E or an
oracle that’s not a Πi,j or Πj,i oracle, then F gives up. F ’s actions when H1 is queried on αSiSj by a Πi,j

or Πj,i oracle are specified below.
F answers E’s Reveal queries and Corrupt queries as specified by Π. However if E asks i or j a Corrupt

query F gives up.
F also answers Send queries not sent to Πi,j and Πj,i oracles as specified by Π. To answer Send queries

of Πi,j and Πj,i oracles, F answers as specified by Π, except that instead of calculating κ′ = H1(α
SiSj ) and

using this key to MAC messages, F calls its own MACing oracle to compute its response. (F thus implicitly
uses κ′′ to ‘represent’ κ′.) F therefore needs to call its MACing oracle to calculate flows on behalf of Πi,j

and Πj,i oracles, and also to decide whether or not such oracles should accept.
If E does not invoke Πs

i,j as an initiator oracle, then F gives up.
On the other hand, if E does invoke Πs

i,j as an initiator oracle, then at some time τ0, Π
s
i,j receives

λ and responds with αRi . If Πs
i,j does not at some later time receive a flow of the form (m, a) where

m = (2, j, i, αRj , αRi) for some αRj , then F gives up.
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However, if Πs
i,j is to accept, it must later receive a flow of this form. In this event, provided F has not

called its MACing oracle previously on m, then F stops and outputs (m, a) as its guess at a valid forgery. If
F has previously called its MACing oracle to compute the flow then F gives up.
Analysis: Suppose E does succeed against initiator Πs

i,j . In this event, F outputs a valid forgery and wins

its experiment, provided E or some other oracle (except Πi,j or Πj,i oracles) has not called H1 on αSiSj ,
and provided F has not previously calculated the flow that makes Πs

i,j accept on behalf of some Πi,j or Πj,i

oracle.
Certainly, by Case 1, the probability that H1 has been called on αSiSj is negligible.
Furthermore, the probability that F has called its MACing oracle to produce the flow is also negligible.

For F could only have called on this message on behalf of a responder Πt
j,i which received αRi as its own

first flow, or on behalf of an initiator Πu
i,j with u 6= s which also chose αRi and needs to decide whether or

not it should accept. The probability the call was made by a responder Πt
j,i before τ0 is negligible since Ri

was chosen at random (note that 1
q−1 is certainly negligible, since the DHS is secure), and if the call was

made after τ0, then Πt
j,i has had a matching conversation to Πs

i,j . The probability the call was made by Πu
i,j

is negligible since in this event, Πu
i,j and Πs

i,j have independently chosen the same Ri.
We conclude that F constructed in this way wins its experiment with probability at least:

n2(k)

(T1(k))2T2(k)
− λ(k)

for some negligible λ(k) — this is still non-negligible, and therefore contradicts the assumed security of the
MAC. Thus n2(k) must be negligible.

Case 2(b): Suppose n3(k) is non-negligible. Again we construct from E an adversary F of the MAC.
F ’s operation: The operation of F is similar to the operation of the MAC adversary constructed during
Case 2(a), except that this time, F picks i, j ∈R I and t ∈R {1, . . . , T2(k)}, guessing that E will succeed
against responder Πt

j,i oracle and not succeed against any initiator oracles.
F answers queries just like the previous adversary we constructed — calling its own MACing oracle as

necessary to answer Send queries to Πi,j and Πj,i oracles.
This time, if E does not invoke Πt

j,i as a responder oracle, or if E succeeds against some initiator oracle,
then F gives up.

On the other hand, if E does invoke Πt
j,i as a responder oracle, then at some time τ1 the oracle must

receive αRi for some Ri, and reply with:

MAC κ′′(2 , j , i , αRj , αRi )

for some Rj ∈R ZZ
∗

q (with the MAC actually computed by F ’s MACing oracle).

If Πt
j,i does not at some later time τ3 > τ1 receive a message of the form (m, a) with m = (3, i, j, αRi , αRj ),

then F gives up.
However, if Πt

j,i is to accept, it must later receive a flow of this form. If F has not previously called its
MACing oracle on m, then F outputs (m, a) as its guess at a valid forgery. If F has already made a call on
m, then F gives up.
Analysis: Suppose E does succeed against responder Πt

j,i and against no initiator oracles. In this event, F
outputs a valid forgery and wins its experiment, provided E or some other oracle (except Πi,j or Πj,i oracles)
has not called H1 on αSiSj , and provided F has not previously calculated the flow that makes Πt

j,i accept
on behalf of some Πi,j or Πj,i oracle.

Certainly, by Case 1, the probability that H1 has been called on αSiSj is negligible.
Furthermore, the probability that F has called its MACing oracle to produce the flow is also negligible.

For F could only have called on this message on behalf of an initiator Πs
i,j which sent αRi as its own first flow,

or on behalf of a responder Πu
j,i with u 6= t which also chose αRj and needs to decide whether or not it should

accept. The probability the call was made by an initiator Πs
i,j is negligible since such a Πs

i,j has accepted,
so by assumption there exists Πv

j,i which has had a matching conversation to Πs
i,j . The probability v 6= t

is negligible, since then Πv
j,i and Πt

j,i have independently chosen the same Rj , and v = t is excluded, since
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then Πs
i,j has had a matching conversation to Πt

j,i. The probability the call was made by Πu
j,i is negligible

since in this event, Πu
j,i and Πt

j,i have again independently chosen the same Rj .
We conclude that F constructed in this way wins its experiment with probability at least:

n3(k)

(T1(k))2T2(k)
− λ(k)

for some negligible λ(k) — this is still non-negligible, and therefore contradicts the assumed security of the
MAC. Thus n3(k) must be negligible.

Together Cases 2(a) and 2(b) contradict the assumption that n(k) is non-negligible. We conclude that
Pr[No-MatchingE(k)] is negligible for all adversaries E.

Condition 4: We argue by contradiction. Fix an arbitrary adversary E and suppose that advantageE(k) is
non-negligible. We say that E succeeds (against Πs

i,j) if E picks Πs
i,j to ask its Test query and outputs the

correct bit Guess. Thus

Pr[E succeeds] = 1
2 + n(k)

for some non-negligible n(k) by assumption. Now call Ak the event that E picks some Πs
i,j oracle to ask its

Test query such that some Πt
j,i oracle has had a matching conversation to Πs

i,j . Clearly

Pr[E succeeds] = Pr[E succeeds|Ak]Pr[Ak] + Pr[E succeeds|Ak]Pr[Ak] .

Condition 3 ensures that Pr[Ak] = λ(k) is negligible. Hence

1
2 + n(k) ≤ Pr[E succeeds|Ak]Pr[Ak] + λ(k) .

Therefore Pr[Ak] = 1− λ(k) and

Pr[E succeeds|Ak] =
1
2 + n1(k)

for some non-negligible n1(k). Now, given event Ak, the key held by Πs
i,j will be of the form H2(α

RiRj ) for
Ri chosen at random by Πs

i,j and Rj chosen at random by Πt
j,i. Call Bk the event that H2 has been queried

on αRiRj by E or some oracle other than Πs
i,j or Πt

j,i. Then

Pr[E succeeds|Ak] = Pr[E succeeds|Ak ∧Bk]Pr[Bk|Ak] + Pr[E succeeds|Ak ∧Bk]Pr[Bk|Ak] .

Since H2 is a random oracle, and Πs
i,j and Πt

j,i remain unopened by definition, Pr[E succeeds|Bk ∧Ak] =
1
2 .

Thus
1
2 + n1(k) ≤ Pr[E succeeds|Ak ∧Bk]Pr[Bk|Ak] +

1
2

so that Pr[Bk|Ak] ≥ n1(k). We conclude that given E picks some Πs
i,j for which there exists some Πt

j,i that

has had a matching conversation to Πs
i,j , then the probability that H2 has previously been queried on αRiRj

by E or some oracle other than Πs
i,j or Πt

j,i is non-negligible.
Therefore we use E to construct an adversary F of the DHS.

F ’s operation: F takes as input (p, q, α) generated by GDH (1k) and (αR′

, αR′′

) for R′, R′′ chosen an random
from ZZ

∗

q , and must try to guess αR′R′′

. F makes (p, q, α) the global parameters for P and picks all entities’
secret values at random. F forms the directory public-info and starts E.

Now F picks i, j ∈R I and s, t ∈R {1, . . . , T2(k)}, guessing that E will select Πs
i,j to ask its Test query

after Πt
j,i has had a matching conversation to Πs

i,j .
F now answers all H1 and H2 oracle queries at random, just like a real random oracle would.
F answers Corrupt queries as specified by Π, except that if E asks i or j a Corrupt query, F gives up.
F also answers Reveal queries as specified by Π, except that if E asks Πs

i,j or Πt
j,i a Reveal query, then

F gives up.
Finally, F also answers all Send queries as specified by Π, except for Send queries to Πs

i,j and Πt
j,i. When

E asks Πs
i,j its first Send query, instead of taking a random sample to form its challenge, Πs

i,j chooses αR′

(so Ri = R′). Similarly, F has Πt
j,i choose αR′′

(so Rj = R′′).

19



If E does not make its queries in such a way that Πt
j,i has a matching conversation to Πs

i,j , then F

gives up. On the other hand, if E does make its queries in this way, then Πs
i,j will accept (holding the key

H2(α
RiRj ), although of course F doesn’t know αRiRj and so can’t actually compute this key).

Now let T3(k) denote a polynomial bound on the number of distinct H2 queries made by E and its
oracles. F picks l ∈R {1, . . . , T3(k)}, guessing that the lth distinct H2 call made during the experiment will
be on αRiRj . When the lth distinct H2 call is made (say on g), then F stops and outputs g as its guess at
αRiRj .

If E and its oracles do not make l distinct H2 oracle calls before E asks its Test query, then F gives up.

Analysis: Suppose E does pick Πs
i,j to ask its Test query after Πt

j,i has had a matching conversation to

Πs
i,j . Then, as we have seen, with non-negligible probability, E or some other oracle has called H2 on αRiRj .

Hence the probability that F succeeds is at least:

n1(k)

(T1(k))2(T2(k))2T3(k)
− µ(k)

for some negligible µ(k) — this is still non-negligible, and therefore contradicts the assumed security of the
DHS. We conclude that n1(k) must be negligible, and thus that advantageE(k) must be negligible. ⊓⊔

B Proof of Theorem 9

B.1 Preliminaries

Before we give the proof itself, some preliminaries are required. The first is the definition of a modified MAC
adversary called a ∗-adversary. Roughly speaking, the ∗-adversary has access to a MACing oracle which
MACs messages under an element of an ordered list L = [κ1, κ2, . . . , κl] of keys chosen independently at
random. The list is unknown to the ∗-adversary, who can however specify which element in the list the oracle
should use to MAC a particular message. The ∗-adversary’s goal is to forge a valid tag on any message (that
has not yet been authenticated) under some key κi ∈ L, where i is also known to the ∗-adversary. This idea
is made precise below.

A ∗-adversary F of a MAC is a probabilistic polytime algorithm with access to a MACing oracle. The
MACing oracle is supplied with a private random oracle P (to which the adversary has only indirect access
through its queries to the MACing oracle). F ’s queries to its MACing oracle take the form (s,m) where s is
a seed to be used by the MACing oracle to compute a key using P, and m is the message to be MACed. To
answer a query (s,m), the MACing oracle first calls P on input s, to get:

κ′ = P(s) .

It then calculates:

MAC κ′(m) = (m, a)

and returns (s,m, a) to F . The output of F is now a triple (s,m, a) such that F has not previously queried
its MACing oracle on (s,m).

Definition 5’ A MAC is a ∗-secure MAC if for every ∗-adversary F of the MAC, the function ǫ(k) defined
by

ǫ(k) = Pr[P ← 2∞; (s,m, a)← F : MAC κ′(m) = (m, a) where κ′ = P(s)]

is negligible.

It is easy to see that ∗-secure MACs are also secure. The following lemma shows that ∗-secure MACs and
secure MACs are equivalent.

Lemma13. If a MAC is secure, then it is also ∗-secure.
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Proof. Suppose, by way of contradiction, that F is a ∗-adversary of a secure MAC which succeeds with
non-negligible probability. We use F to build an (ordinary) adversary F of the MAC. By assumption

Pr[F succeeds] = n(k)

for some non-negligible n(k).
Let T3(k) denote a polynomial bound on the number of distinct seeds on which F makes a MAC query.

Provided the message space is non-trivial, we can assume without loss of generality that F always makes a
MAC call during its experiment on the seed s that forms part of its eventual output (s,m, a).
F ’s operation: F must perform F ’s experiment. F picks l ∈R {1, . . . , T3(k)}, guessing that F ’s eventual
output will take the form (s,m, a) where s is the lth distinct seed on which F queried its MACing oracle.

F answers F ’s queries as follows. If F queries (s′,m′) where s′ is not the lth distinct seed queried by F ,
then F picks a key κ′′ at random to represent P(s′), and returns

(s′,m′, a′) where (m′, a′) = MAC κ′′(m ′) .

If F queries (s,m) where s is the lth distinct seed queried by F , then F calls its own MACing oracle on m,
receiving (m, a) in return. F then answers F ’s query with:

(s,m, a) .

If F does not make queries on l distinct seeds, then F gives up.
Otherwise, F outputs (σ, µ, α). If σ = s, then F outputs (µ, α) as its guess at a valid authenticated

message. Otherwise, if σ 6= s, F gives up.
Analysis: If F does indeed output a ‘good’ triple (σ, µ, α) where σ was the lth distinct seed on which F

queried its oracle, then F certainly succeeds. Therefore the probability that F succeeds is at least

n(k)

T3(k)

which is still non-negligible. This contradicts the assumed security of the MAC. ⊓⊔

During the main proof that Protocol 2 is secure, we will in some cases show that a successful adversary
E of P can be used to build a successful ∗-adversary F of the MAC. Lemma 13 above demonstrates that
the existence of such an F which succeeds with non-negligible probability contradicts the assumed security
of the MAC.

B.2 The proof

Recall that in Protocol 2’s description, keys are formed as H1(α
RiRj , αSiSj ) and H2(α

RiRj , αSiSj ). In what
follows, it will sometimes be helpful to think of H1 and H2 as taking two distinct inputs — the first αRiRj

and the second αSiSj . This is certainly ‘well-defined’, since we have stipulated that the encodings used are
unique.

Theorem 9 Protocol 2 is a secure AKC protocol provided the DHS and MAC are secure and H1 and H2

are independent random oracles.

The proof of this theorem is in many respects analogous to the proof of Theorem 8. We draw the reader’s
attention to this analogy in case it is helpful to compare the two proofs.

Proof. Again, take each condition of Definition 3 in turn.

Conditions 1 and 2: The first two conditions follow immediately from the description of P and the as-
sumption that H2 is a random oracle.

Condition 3: Consider an arbitrary adversary E, and suppose Pr[No-MatchingE(k)] = n(k) is non-
negligible. Call Ak the event that during E’s experiment, there exists a pair i, j ∈ I with i, j 6∈ C for
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which H1 or H2 is queried with αSiSj as second input either by E or by any oracle except Πi,j or Πj,i

oracles.

Case 1: Suppose that Pr[Ak] = n1(k) is non-negligible. E can be used to construct an adversary F of the
DHS that wins its experiment with non-negligible probability.
F ’s operation: F takes as input (p, q, α) and (αS′

, αS′′

) and must try to guess αS′S′′

.
F picks a pair i, j ∈R I, guessing that E or an oracle other than a Πi,j or Πj,i oracle will query H1 or

H2 with αSiSj as the second input. F performs E’s experiment — making (p, q, α) the global parameters for
P , and choosing all entities’ secret values at random, except for i’s and j’s. F makes αS′

i’s public value (so
Si = S′) and αS′′

j’s public value (so Sj = S′′). F starts E.
F answers all H1 and H2 queries at random just like a real random oracle would. F answers all Send and

Reveal queries as specified by Π, except for these queries made to Πi,j and Πj,i oracles. F also answers all
Corrupt queries not made to i or j as specified by Π.

If E asks i or j a Corrupt query, then F gives up.
When E asks a Πi,j or Πj,i oracle a Send query, instead of computing the values H1(α

RiRj , αSiSj )
and H2(α

RiRj , αSiSj ) and using them as the keys used by the oracle, F must pick κ′ and κ at random to
‘represent’ H1(α

RiRj , αSiSj ) and H2(α
RiRj , αSiSj ) respectively, since F doesn’t actually know αSiSj . F then

uses κ′ and κ when determining the oracle’s actions.
If F asks a Reveal query to a Πi,j or Πj,i oracle, then of course instead of revealing H2(α

RiRj , αSiSj ),
the oracle must reveal the κ that F has chosen to represent H2(α

RiRj , αSiSj ).
Now let T3(k) denote a polynomial bound on the number of calls made by E and its oracles to H1 and

H2 that have distinct second inputs. F picks l ∈R {1, . . . , T3(k)}, guessing that the lth distinct second input
on which H1 or H2 are queried will be αSiSj . When the call is made on the lth distinct second input to
either H1 or H2 (say on g), F stops and outputs g as its guess at αSiSj .

If E halts before the lth distinct second input is queried, F gives up.
As before, one problem remains. H1 or H2 may have been queried with αSiSj as second input at some

time before the lth distinct second input call. In this case, F will have answered at random, and its answer
may have been in contradiction to one of the keys that has been used by some Πi,j or Πj,i oracle. The
problem is that E is not guaranteed to halt in this eventuality. To sidestep this potential problem, let T4(k)
denote a polynomial bound on E’s runtime under ordinary circumstances. If F runs E for longer than T4(k),
F gives up, concluding that it must have missed an H1 or H2 query with second input αSiSj .
Analysis: Observe that if the lth distinct H1 or H2 second input query made by E or its oracles is on αSiSj ,
then F certainly wins its experiment. We conclude that the probability F outputs the correct value g = αSiSj

is at least:
n1(k)

(T1(k))2T3(k)

which is non-negligible. This contradicts the assumed security of the DHS. We conclude that n1(k) is negli-
gible.

Case 2: Let n2(k) be the probability that E succeeds against at least one initiator oracle, and n3(k) be the
probability that E succeeds against at least one responder oracle but no initiator oracles. We have:

n(k) = n2(k) + n3(k) .

So there are two subcases to consider.

Case 2(a): Suppose n2(k) is non-negligible. In this case we construct from E a ∗-adversary F of the MAC.

F ’s operation: F performs E’s experiment. F runs G on input 1k — G chooses a parameter set (p, q, α) and
secret values for all the entities. G calculates all public values and forms the directory public-info.

F now starts E on input 1k and public-info. F picks i, j ∈R I and s ∈R {1, . . . , T2(k)}, guessing that E
will succeed against initiator Πs

i,j oracle.

F answers all E’s queries itself. To answer queries of H1 and H2, F itself picks replies at random, with
the exception of H1 queries with second input αSiSj . If H1 is queried on second input αSiSj by E or an

22



oracle that’s not a Πi,j or Πj,i oracle, then F gives up. F ’s actions when H1 is queried on second input αSiSj

by a Πi,j or Πj,i oracle are specified below.

F answers E’s Reveal queries and Corrupt queries as specified by Π. However if E asks i or j a Corrupt

query F gives up.

F also answers Send queries not sent to Πi,j and Πj,i oracles as specified by Π. To answer Send queries of
Πi,j and Πj,i oracles, F answers as specified by Π, except that instead of calculating κ′ = H1(α

RiRj , αSiSj )
each time and using this key to MAC messages, F calls its own MACing oracle on the message under the
seed s = αRiRj to compute its response. (F is thus implicitly using κ′′ = P(αRiRj ) to ‘represent’ κ′.) F

therefore needs to call its MACing oracle to calculate flows on behalf of Πi,j and Πj,i oracles, and also to
decide whether or not such oracles should accept. Note that provided H1 is only called by Πi,j and Πj,i on
second input αSiSj , then P(s) = H1(s, α

SiSj ) essentially forms a private random oracle shared by Πi,j and
Πj,i oracles.

If E does not invoke Πs
i,j as an initiator oracle, then F gives up.

On the other hand, if E does invoke Πs
i,j as an initiator oracle, then at some time τ0, Π

s
i,j receives

λ and responds with αRi . If Πs
i,j does not at some later time receive a flow of the form (m, a) where

m = (2, j, i, αRj , αRi) for some αRj , then F gives up.

However, if Πs
i,j is to accept, it must later receive a flow of this form. In this event, provided F has not

called its MACing oracle previously on m under the seed s = αRiRj , then F stops and outputs (s,m, a) as
its guess at a valid forgery. If F has previously called its MACing oracle to compute the flow under this seed
then F gives up.

Analysis: Suppose E does succeed against initiator Πs
i,j . In this event, F outputs a valid forgery and wins

its experiment, provided E or some other oracle has not called H1 on second input αSiSj , and provided F

has not previously calculated the flow that makes Πs
i,j accept on behalf of some Πi,j or Πj,i oracle.

Certainly, by Case 1, the probability that H1 has been called on second input αSiSj is negligible.

Furthermore, the probability that F has called its MACing oracle to produce the flow is also negligible.
For F could only have called on this message on behalf of a responder Πt

j,i which received αRi as its own

first flow, or on behalf of an initiator Πu
i,j with u 6= s which also chose αRi and needs to decide whether or

not it should accept. The probability the call was made by a responder Πt
j,i before τ0 is negligible since Ri

was chosen at random, and if the call was made after τ0, then Πt
j,i has had a matching conversation to Πs

i,j .
The probability the call was made by Πu

i,j is negligible since in this event, Πu
i,j and Πs

i,j have independently
chosen the same Ri.

We conclude that F constructed in this way wins its experiment with probability at least:

n2(k)

(T1(k))2T2(k)
− λ(k)

for some negligible λ(k) — this is still non-negligible, and therefore contradicts the assumed security of the
MAC. Thus n2(k) must be negligible.

Case 2(b): Suppose n3(k) is non-negligible. Again we construct from E a ∗-adversary F of the MAC.

F ’s operation: The operation of F is similar to the operation of the MAC ∗-adversary constructed during
Case 2(a), except that this time, F picks i, j ∈R I and t ∈R {1, . . . , T2(k)}, guessing that E will succeed
against responder Πt

j,i oracle and not succeed against any initiator oracles.

F answers queries just like the previous adversary we constructed — calling its own MACing oracle as
necessary to answer Send queries to Πi,j and Πj,i oracles.

This time, if E does not invoke Πt
j,i as a responder oracle, or if E succeeds against some initiator oracle,

then F gives up.

On the other hand, if E does invoke Πt
j,i as a responder oracle, then at some time τ1 the oracle must

receive αRi for some Ri, and reply with:

MAC κ′′(2 , j , i , αRj , αRi )
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for some Rj ∈R ZZ
∗

q (with the MAC actually computed by F ’s MACing oracle in answer to a call on (s,m′)

with s = αRiRj and m′ = (2, j, i, αRj , αRi)).
If Πt

j,i does not at some later time τ3 > τ1 receive a message of the form (m, a) with m = (3, i, j, αRi , αRj ),

then F gives up.
However, if Πt

j,i is to accept, it must later receive a flow of this form. If F has not previously called its

MACing oracle on (s,m), then F outputs (s,m, a) as its guess at a valid forgery. If F has already made a
call on (s,m), then F gives up.
Analysis: Suppose E does succeed against responder Πt

j,i and against no initiator oracles. In this event, F
outputs a valid forgery and wins its experiment, provided E or some other oracle has not called H1 on second
input αSiSj , and provided F has not previously calculated the flow that makes Πt

j,i accept on behalf of some
Πi,j or Πj,i oracle.

Certainly, by Case 1, the probability that H1 has been called on second input αSiSj is negligible.
Furthermore, the probability that F has called its MACing oracle to produce the flow is also negligible.

For F could only have called on this message on behalf of an initiator Πs
i,j which sent αRi as its own first flow,

or on behalf of a responder Πu
j,i with u 6= t which also chose αRj and needs to decide whether or not it should

accept. The probability the call was made by an initiator Πs
i,j is negligible since such a Πs

i,j has accepted,
so by assumption there exists Πv

j,i which has had a matching conversation to Πs
i,j . The probability v 6= t

is negligible, since then Πv
j,i and Πt

j,i have independently chosen the same Rj , and v = t is excluded, since
then Πs

i,j has had a matching conversation to Πt
j,i. The probability the call was made by Πu

j,i is negligible
since in this event, Πu

j,i and Πt
j,i have again independently chosen the same Rj .

We conclude that F constructed in this way wins its experiment with probability at least:

n3(k)

(T1(k))2T2(k)
− λ(k)

for some negligible λ(k) — this is still non-negligible, and therefore contradicts the assumed security of the
MAC. Thus n3(k) must be negligible.

Together Cases 2(a) and 2(b) contradict the assumption that n(k) is non-negligible. We conclude that
Pr[No-MatchingE(k)] is negligible for all adversaries E.

Condition 4: Fix an arbitrary adversary E and suppose that advantageE(k) is non-negligible. Thus

Pr[E succeeds] = 1
2 + n(k)

for some non-negligible n(k) by assumption. Now call Ak the event that E picks some Πs
i,j oracle to ask its

Test query such that some Πt
j,i oracle has had a matching conversation to Πs

i,j . Clearly

Pr[E succeeds] = Pr[E succeeds|Ak]Pr[Ak] + Pr[E succeeds|Ak]Pr[Ak] .

Condition 3 ensures that Pr[Ak] = λ(k) is negligible. Hence

1
2 + n(k) ≤ Pr[E succeeds|Ak]Pr[Ak] + λ(k) .

Therefore Pr[Ak] = 1− λ(k) and
Pr[E succeeds|Ak] =

1
2 + n1(k)

for some non-negligible n1(k). Now, given event Ak, the key held by Πs
i,j will be of the form H2(α

RiRj , αSiSj )
for Ri chosen at random by Πs

i,j and Rj chosen at random by Πt
j,i. Call Bk the event that H2 has been

queried on (αRiRj , αSiSj ) by E or some oracle other than Πs
i,j or Πt

j,i. Then

Pr[E succeeds|Ak] = Pr[E succeeds|Ak ∧Bk]Pr[Bk|Ak] + Pr[E succeeds|Ak ∧Bk]Pr[Bk|Ak] .

Since H2 is a random oracle, and Πs
i,j and Πt

j,i remain unopened by definition, Pr[E succeeds|Ak ∧Bk] =
1
2 .

Thus
1
2 + n1(k) ≤ Pr[E succeeds|Ak ∧Bk]Pr[Bk|Ak] +

1
2
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so that Pr[Bk|Ak] ≥ n1(k). We conclude that given E picks some Πs
i,j for which there exists some Πt

j,i

that has had a matching conversation to Πs
i,j , then the probability that H2 has previously been queried on

(αRiRj , αSiSj ) is non-negligible. In particular, this means that the probability that either H1 or H2 has been
queried on first input αRiRj is non-negligible (specifically at least n1(k)).

Therefore we use E to construct an adversary F of the DHS.
F ’s operation: F takes as input (p, q, α) generated by GDH (1k) and (αR′

, αR′′

). F makes (p, q, α) the global
parameters for P and picks all entities’ secret values at random. F forms the directory public-info and starts
E.

Now F picks i, j ∈R I and s, t ∈R {1, . . . , T2(k)}, guessing that E will select Πs
i,j to ask its Test query

after Πt
j,i has had a matching conversation to Πs

i,j .
F now answers all H1 and H2 oracle queries at random, just like a real random oracle would.
F answers Corrupt queries as specified by Π, except that if E asks i or j a Corrupt query, F gives up.
F also answers Reveal queries as specified by Π, except that if E asks Πs

i,j or Πt
j,i a Reveal query, then

F gives up.
Finally, F also answers all Send queries as specified by Π, except for Send queries to Πs

i,j and Πt
j,i. When

E asks Πs
i,j its first Send query, instead of taking a random sample to form its challenge, Πs

i,j instead chooses

αR′

(so Ri = R′). Similarly, F has Πt
j,i choose αR′′

(so Rj = R′′). Furthermore, if E makes its queries in
such a way that Πs

i,j and Πt
j,i have matching conversations, then F must also choose a key κ′ to represent

H1(α
RiRj , αSiSj ), and use this key when deciding how these oracle should respond to Send queries.

If E does not make its queries in such a way that Πt
j,i has a matching conversation to Πs

i,j , then F

gives up. On the other hand, if E does make its queries in this way, then Πs
i,j will accept (holding the key

H2(α
RiRj , αSiSj ), although of course F doesn’t know αRiRj and so can’t actually compute this key).

Now let T3(k) denote a polynomial bound on the number of H1 and H2 queries on distinct first inputs
made by E and its oracles. F picks l ∈R {1, . . . , T3(k)}, guessing that the lth distinct first input on which
H1 or H2 is called during the experiment will be on αRiRj . When the lth distinct first input is called is made
(say on g), then F stops and outputs g as its guess at αRiRj .

If E and its oracles do not make l distinct first input calls to H1 and H2 before E asks its Test query,
then F gives up.

One problem remains. H1 may have been called on (αRiRj , αSiSj ) before H1 or H2 is called on the lth
distinct first input. In this case, F will have picked an answer at random, and its answer may have been in
contradiction to the keys that it has used to represent this call. The problem is that E is not guaranteed
to halt in this eventuality. To sidestep this potential problem, let T4(k) denote a polynomial bound on E’s
runtime under ordinary circumstances. If F runs E for longer than T4(k), F gives up, concluding that it
must have missed an H1 query on first input αRiRj .
Analysis: Suppose E does pick Πs

i,j to ask its Test query after Πt
j,i has had a matching conversation to Πs

i,j .
Then, as we have seen, with non-negligible probability, E or some other oracle has called H1 or H2 on first
input αRiRj . Hence the probability that F succeeds is at least:

n1(k)

(T1(k))2(T2(k))2T3(k)
− µ(k)

for some non-negligible µ(k) — this is still non-negligible, and therefore contradicts the assumed security of
the DHS. We conclude that n1(k) must be negligible, and thus that advantageE(k) must be negligible. ⊓⊔

C Proof of Theorem 11

This theorem is only a stepping-stone to Theorem 8, and the ideas used in the proof have already been seen
in the previous proofs, so we just give a sketch of the construction here.

Proof. (sketch)
The first two conditions of Definition 10 follow immediately from the description of P and the assumption

that H is a random oracle.
Consider the third condition. Fix an arbitrary adversary E that makes no Reveal queries, and suppose

that advantageE(k) is non-negligible. E picks some Πs
i,j oracle to ask its Test query. The key held by
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such an oracle will be of the form H(αRiRj , αSiSj ). Since i and j are by definition uncorrupted, and by
assumption E does not ask any Reveal queries, if E is to succeed with non-negligible probability, then it
must itself have queried H on second input αSiSj at some time. Therefore such an adversary can be used to
construct an adversary of the DHS which succeeds with non-negligible probability, in much the same way as
such an adversary was constructed in Case 1 of the proof of Theorem 9. The existence of such an adversary
contradicts the assumed security of the DHS, so we conclude that advantageE(k) must be negligible for all
adversaries E that make no Reveal queries. ⊓⊔
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