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Introduction



Partial latin squares

A latin square of order n is an n × n array with entries from

[n] := {1, 2, . . . , n} such that each symbol appears exactly once in every

row and every column.

A partial latin square of order n is an n × n array whose cells are either

empty or filled with one of n symbols in such a way that each symbol

appears at most once in every row and every column.

A completion of a partial latin square P is a latin square which contains

every entry of P.
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Examples

Here is a partial latin square and a completion of it to a latin square of

order 5.
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1 3 5 2 4

3 2 4 5 1

4 1 2 3 5

2 5 1 4 3

5 4 3 1 2
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Barriers

We can’t use any row, column, or symbol very often if we want a

completion to exist:
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Barriers

We can’t use any row, column, or symbol very often if we want a

completion to exist:
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2 low

' 1
2 high
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Completion threshold

Let us say that a partial latin square is ε-dense if no row, column, or

symbol is used more than εn times.

Theorem

For sufficiently large n, every ε-dense partial latin square of order n has a

completion.

� Prehistory: ε→ 0

� 1991: ε = 10−7 (Gustavsson)

� 2013: ε ≈ 10−4 (Bartlett)

� 2019: ε ≈ 0.04 (Bowditch & D.)

� Conjecture: ε = 0.25
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Sudoku

A Sudoku latin square of type (h,w) is a latin square of order n = hw

divided into a w × h pattern of h × w sub-arrays (boxes), each of which

contains every symbol exactly once.

A partial Sudoku is a partial latin square in which each symbol appears at

most once in every box.

Completion is defined analogously as for partial latin squares.
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Stronger sparseness assumptions
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Stronger sparseness assumptions

Definition

Let us say that a Sudoku of type (h,w) is ε-dense if:

� each row, column, and box has at most εn filled cells; AND

� each symbol occurs at most εh times in any bundle of h rows

corresponding to the box partition, and likewise at most εw times in

any bundle of w columns.

Question: Can ε-dense Sudoku always be completed for some ε > 0?

10



Stronger sparseness assumptions

Definition

Let us say that a Sudoku of type (h,w) is ε-dense if:

� each row, column, and box has at most εn filled cells; AND

� each symbol occurs at most εh times in any bundle of h rows

corresponding to the box partition, and likewise at most εw times in

any bundle of w columns.

Question: Can ε-dense Sudoku always be completed for some ε > 0?

10



The linear system



Linear equations

Consider an n × n Sudoku. Let the rows, columns, symbols and boxes be

denoted ri , cj , sk , b`, respectively, where i , j , k , ` ∈ [n].

Let xijk denote the number/fraction of symbols sk placed in cell (i , j).

Sudoku constraints correspond to linear equations on these variables:

� every cell has exactly one symbol:
∑

k xijk = 1 for each (i , j) ∈ [n]2.

� every row has every symbol once:
∑

j xijk = 1 for each (i , k) ∈ [n]2.

� ” column ” ” :
∑

i xijk = 1 for each (j , k) ∈ [n]2.

� every box contains every symbol once:∑
(i,j)∈box(`)

xijk = 1

for each (k, `) ∈ [n]2.
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Linear system

This results in a 4n2 × n3 linear system

W~x = ~1 (all-ones vector).

There is a näıve solution: ~x = 1
n
~1.

If some entries have been pre-filled, a similar linear system can be used.

We can either adjust the right side, or delete those variables xijk which

are unavailable.

If we get a {0, 1}-valued solution ~x, this leads to a completion of the

corresponding partial Sudoku.
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Linear system

This results in a 4n2 × n3 linear system

W~x = ~1 (all-ones vector).

There is a näıve solution: ~x = 1
n
~1.

If some entries have been pre-filled, a similar linear system can be used.

We can either adjust the right side, or delete those variables xijk which

are unavailable.

If we get a [0, 1]-valued solution ~x, this leads to a fractional completion

of the corresponding partial Sudoku.
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Graph decomposition model

We can think of a Sudoku as an edge-decomposition of the 4-partite

graph shown below into ‘tiles’ {ri , cj , sk , b`}.

W is the {0, 1} inclusion matrix of edges versus tiles.
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The normal system

Let M = WW> and consider instead the normal system M~x = ~1.

Rows and columns of M are indexed by edges ricj , ri sk , cjsk , b`sk . Entries

tell us how many tiles contain two given edges.

That is,

M(e, f ) =



n if e = f

h if e ∪ f = {cj , sk , b`} where cj meets b`

w if e ∪ f = {ri , sk , b`} where ri meets b`

1 if e ∪ f has exactly one of each ri , cj , sk

0 otherwise.
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Coefficient matrix

M =
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Coherent configuration

Using the symmetries present in Sudoku, we can express M in an algebra

of fixed dimension, independent of h and w .

� Rows can be equal, unequal in the same bundle, or in different

bundles. Same with columns.

� Boxes can be equal, row-adjacent, column-adjacent, or neither.

� Symbols can be equal or unequal.

These lead to 69 relations on edges.
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Relations
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Structure constants

We found and stored symbolic structure constants for this coherent

configuration using the following procedure:

� argue that they are all polynomials of degree ≤ 2 in each of h,w ;

� directly compute all structure constants for the nine cases

2 ≤ h,w ≤ 4;

� interpolate to arrive at symbolic expressions.
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Possible values

Fix two edges e, f which are related in some way. In picking a third edge

having prescribed relations with each of e, f , we multiply two of:

� row choices ∈ {0, 1, h, h − 1, h − 2, n − h, n − 2h};
� column choices ∈ {0, 1,w ,w − 1,w − 2, n − w , n − 2w};
� symbol choices ∈ {0, 1, n, n − 1, n − 2};
� box choices ∈ {0, 1, h, h − 1, h − 2} ∗ {0, 1,w ,w − 1,w − 2}.
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Spectral decomposition



Summary

Proposition

The eigenvalues of M are θj = jn, j = 0, 1, . . . , 4. Each eigenspace has a

basis of eigenvectors consisting of vectors with entries in {0,±1}.

20



Kernel of M

• θ0 = 0; kernel dimension 3n + (h + w)(n − 1)

(A)

++++++ −−−−−−
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Kernel of M

• θ0 = 0; kernel dimension 3n + (h + w)(n − 1)
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Kernel of M

• θ0 = 0; kernel dimension 3n + (h + w)(n − 1)

(B)

+++
+++

−−−−−−
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Kernel of M

• θ0 = 0; kernel dimension 3n + (h + w)(n − 1)

(C)

++++++
++++++

−−−−−−
−−−−−−
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Other eigenvalues and eigenvectors

• θ1 = n; eigenspace dimension 4n2 − (2n − 3)(h + w)− 5n − 1

(A)

+
+
−

−
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Other eigenvalues and eigenvectors
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Other eigenvalues and eigenvectors
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Other eigenvalues and eigenvectors

• θ2 = 2n; eigenspace dimension (n − 3)(h + w − 1) + 2n

(A)
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−−−−−−
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Other eigenvalues and eigenvectors

• θ2 = 2n; eigenspace dimension (n − 3)(h + w − 1) + 2n

(B)

+
+

+
+

−
−

−
−

+
+

+
+

−
−

−
−

29



Other eigenvalues and eigenvectors

• θ2 = 2n; eigenspace dimension (n − 3)(h + w − 1) + 2n
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Other eigenvalues and eigenvectors

• θ3 = 3n; eigenspace dimension n + h + w − 3
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Other eigenvalues and eigenvectors

• θ3 = 3n; eigenspace dimension n + h + w − 3
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Other eigenvalues and eigenvectors

• θ4 = 4n; eigenspace dimension 1
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Projectors

Using orthogonal projections onto the eigenspaces, we can write

M = nE1 + 2nE2 + 3nE3 + 4nE4.

= n +2n +3n +4n
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A generalized inverse

Let K denote projection onto the kernel. For x ∈ R, we can invert the

additive shift A = M + n
xK as

A−1 =
1

n

xK +
4∑

j=1

1

j
Ej

 .

With the help of computer, the choice x = 3/2 minimizes

‖A−1‖∞ =
15

4n
− 7(h + w)

8n2
− 4

9n2
+

31(h + w)− 21

72n3
<

15

4n
.
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Perturbation



Perturbed linear systems

Lemma

Let A be an N ×N invertible matrix over the reals. Suppose A−∆A is a

perturbation. Then

� A−∆A is invertible provided ‖A−1∆A‖∞ < 1; and

� the solution ~x to (A−∆A)~x = A~1 is entrywise nonnegative provided

‖A−1∆A‖∞ ≤ 1
2 .

Proof idea.

Use the series expansion (A−∆A)−1 =
∞∑
k=0

(A−1∆A)kA−1.
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A perturbation of M

Let S be an ε-dense partial Sudoku of type (h,w), where hw = n.

Define MS similarly to M, so that MS(e, f ) records the number of

available tiles {ri , cj , sk , b`} containing e ∪ f .

Here is a white lie∗, but morally true:

Proposition

‖M −MS‖∞ < 12εn.

*: we need to use a border to make MS and M have the same dimensions
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Main result

Theorem

Let ε < 1/101. For sufficiently large h and w , every ε-dense partial

Sudoku of type (h,w) has a fractional completion, that is, an

assignment of positive rational frequencies to symbols in unfilled cells so

that the Sudoku conditions hold.
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Proof sketch

We show MS~x = ~1 has an entrywise nonnegative solution ~x.

We shift the coefficient matrix by a multiple of K and view it as a

perturbation of A (the ‘empty’ Sudoku).

Letting ∆A be this perturbation, we succeed when

‖A−1∆A‖∞ <
15

4n
× 12εn +

11

2
ε+ o(1) =

101

2
ε+ o(1) <

1

2
.
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Wrap-up



Concluding remarks

� Some details on bordering our matrices have been suppressed for

clarity.

� If the boxes are asymptotically thin (say w fixed and n = hw large),

then the bundle condition can be dropped.

� A structure of wiggly but ‘near-rectangular’ boxes can be handled

via a secondary perturbation.

� Can this sparsity threshold for fractional completion be converted

into something for actual completion?
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Thank you!
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