Fractional Sudoku

A coherent configuration and fractional completion threshold

Peter Dukes* and Kate Nimegeers

University of Victoria Math & Stats

1. Introduction

Sparse partial latin squares; Sudoku; Completion

2. The linear system

Equations; Coherent configuration

3. Spectral decomposition

Kernel; Eigenvalues/eigenvectors; Generalized inverse

4. Perturbation

Main result; Proof sketch

5. Wrap-up

Remarks; References

Introduction

A <u>latin square</u> of order *n* is an $n \times n$ array with entries from $[n] := \{1, 2, ..., n\}$ such that each symbol appears exactly once in every row and every column.

A <u>partial</u> latin square of order n is an $n \times n$ array whose cells are either empty or filled with one of n symbols in such a way that each symbol appears at most once in every row and every column.

A <u>completion</u> of a partial latin square P is a latin square which contains every entry of P. Here is a partial latin square and a completion of it to a latin square of order 5.

1				
	2	4		
			3	
			1	

1	3	5	2	4
3	2	4	5	1
4	1	2	3	5
2	5	1	4	3
5	4	3	1	2

We can't use any row, column, or symbol very often if we want a completion to exist:

1	2	3	4):	
				5	

1			
2			
3			
4			
	5		

1				
	1			
		1		
			1	
				2

We can't use any row, column, or symbol very often if we want a completion to exist:

Let us say that a partial latin square is ϵ -dense if no row, column, or symbol is used more than ϵn times.

Let us say that a partial latin square is ϵ -dense if no row, column, or symbol is used more than ϵn times.

Theorem

For sufficiently large n, every ϵ -dense partial latin square of order n has a completion.

- Prehistory: $\epsilon
 ightarrow 0$
- 1991: $\epsilon = 10^{-7}$ (Gustavsson)
- 2013: $\epsilon \approx 10^{-4}$ (Bartlett)
- 2019: *ϵ* ≈ 0.04 (Bowditch & D.)

Let us say that a partial latin square is ϵ -dense if no row, column, or symbol is used more than ϵn times.

Theorem

For sufficiently large n, every ϵ -dense partial latin square of order n has a completion.

- Prehistory: $\epsilon
 ightarrow 0$
- 1991: $\epsilon = 10^{-7}$ (Gustavsson)
- 2013: $\epsilon \approx 10^{-4}$ (Bartlett)
- 2019: *ϵ* ≈ 0.04 (Bowditch & D.)
- Conjecture: $\epsilon = 0.25$

A <u>Sudoku</u> latin square of type (h, w) is a latin square of order n = hw divided into a $w \times h$ pattern of $h \times w$ sub-arrays (boxes), each of which contains every symbol exactly once.

A partial Sudoku is a partial latin square in which each symbol appears at most once in every box.

Completion is defined analogously as for partial latin squares.

Stronger sparseness assumptions

1	2	3				
4	5	6				
7	8	:(9			

Stronger sparseness assumptions

Definition

Let us say that a Sudoku of type (h, w) is ϵ -dense if:

- each row, column, and box has at most ϵn filled cells; AND
- So each symbol occurs at most ϵh times in any bundle of h rows corresponding to the box partition, and likewise at most ϵw times in any bundle of w columns.

Definition

Let us say that a Sudoku of type (h, w) is ϵ -dense if:

- each row, column, and box has at most ϵn filled cells; AND
- each symbol occurs at most

 eh times in any bundle of *h* rows corresponding to the box partition, and likewise at most
 ew times in any bundle of *w* columns.

Question: Can ϵ -dense Sudoku always be completed for some $\epsilon > 0$?

The linear system

Consider an $n \times n$ Sudoku. Let the rows, columns, symbols and boxes be denoted $\underline{r_i}, \underline{c_j}, \underline{s_k}, \underline{b_\ell}$, respectively, where $i, j, k, \ell \in [n]$.

Let x_{ijk} denote the number/fraction of symbols s_k placed in cell (i, j). Sudoku constraints correspond to linear equations on these variables:

- every cell has exactly one symbol: $\sum_k x_{ijk} = 1$ for each $(i, j) \in [n]^2$.
- every row has every symbol once: $\sum_{i} x_{ijk} = 1$ for each $(i, k) \in [n]^2$.
- "column " ": $\sum_i x_{ijk} = 1$ for each $(j, k) \in [n]^2$.

Consider an $n \times n$ Sudoku. Let the rows, columns, symbols and boxes be denoted r_i, c_j, s_k, b_ℓ , respectively, where $i, j, k, \ell \in [n]$.

Let x_{ijk} denote the number/fraction of symbols s_k placed in cell (i, j). Sudoku constraints correspond to linear equations on these variables:

- every cell has exactly one symbol: $\sum_k x_{ijk} = 1$ for each $(i, j) \in [n]^2$.
- every row has every symbol once: $\sum_{i} x_{ijk} = 1$ for each $(i, k) \in [n]^2$.
- "column " ": $\sum_i x_{ijk} = 1$ for each $(j, k) \in [n]^2$.
- every box contains every symbol once:

$$\sum_{(i,j)\in\mathrm{box}(\ell)}x_{ijk}=1$$

for each $(k, \ell) \in [n]^2$.

This results in a $4n^2 \times n^3$ linear system

 $W\vec{x} = \vec{1}$ (all-ones vector).

There is a naïve solution: $\vec{x} = \frac{1}{n}\vec{1}$.

If some entries have been pre-filled, a similar linear system can be used. We can either adjust the right side, or delete those variables x_{ijk} which are unavailable.

If we get a $\{0,1\}$ valued solution \vec{x} , this leads to a completion of the corresponding partial Sudoku.

This results in a $4n^2 \times n^3$ linear system

 $W\vec{\mathsf{x}} = \vec{1}$ (all-ones vector).

There is a naïve solution: $\vec{x} = \frac{1}{n}\vec{1}$.

If some entries have been pre-filled, a similar linear system can be used. We can either adjust the right side, or delete those variables x_{ijk} which are unavailable.

If we get a [0,1] valued solution \vec{x} , this leads to a *fractional* completion of the corresponding partial Sudoku.

We can think of a Sudoku as an edge-decomposition of the 4-partite graph shown below into 'tiles' $\{r_i, c_j, s_k, b_\ell\}$

We can think of a Sudoku as an edge-decomposition of the 4-partite graph shown below into 'tiles' $\{r_i, c_j, s_k, b_\ell\}$.

W is the $\{0,1\}$ inclusion matrix of edges versus tiles.

Let $M = WW^{\top}$ and consider instead the normal system $M\vec{x} = \vec{1}$.

Rows and columns of M are indexed by edges r_ic_j , r_is_k , c_js_k , $b_\ell s_k$. Entries tell us how many tiles contain two given edges.

That is,

$$M(e,f) = \begin{cases} n & \text{if } e = f \\ h & \text{if } e \cup f = \{c_j, s_k, b_\ell\} \text{ where } c_j \text{ meets } b_\ell \\ w & \text{if } e \cup f = \{r_i, s_k, b_\ell\} \text{ where } r_i \text{ meets } b_\ell \\ 1 & \text{if } e \cup f \text{ has exactly one of each } r_i, c_j, s_k \\ 0 & \text{otherwise.} \end{cases}$$

Coefficient matrix

15

Using the symmetries present in Sudoku, we can express M in an algebra of fixed dimension, independent of h and w.

- Rows can be equal, unequal in the same bundle, or in different bundles. Same with columns.
- Boxes can be equal, row-adjacent, column-adjacent, or neither.
- Symbols can be equal or unequal.

These lead to 69 relations on edges.

Relations

	row-col	row-symbol	col-symbol	box-symbol	
ol	$r_i = r_{i'}$ $c_j = c_{j'}$ $r_i = r_{i'}$ $c_j \cong c_{j'}$ $c_j \cong c_{j'}$ $c_j \approx c_{j'}$ $c_j \approx c_{j'}$	$r_i = r_{i'}$		$\begin{array}{c c} b_{\ell} \\ \vdots \\ b_{\text{box}(i,j)} \end{array} \xrightarrow{b_{\ell}} \\ b_{\text{box}(i,j)} \end{array}$	
row-c	$\begin{array}{ccc} r_i \not = r_{i'} & r_i \not = r_{i'} & r_i \not = r_{i'} \\ c_j = c_{j'} & c_j \not \cong c_{j'} & c_j \not \sim c_{j'} \\ 4 & 5 & 6 \end{array}$	$r_i \not\cong r_{i'}$	$c_j = c_{j'} c_j \not\cong c_{j'} c_j \not\approx c_{j'}$	b_{ℓ} b_{ℓ} b_{ℓ}	
	$\begin{array}{c c} r_i \approx r_{i'} \\ c_j = c_{j'} \\ 7 \end{array} \begin{vmatrix} r_i \approx r_{i'} \\ c_j \not\cong c_{j'} \\ g \\ c_j \approx c_{j'} \\ g \end{vmatrix}$	$r_i \approx r_{i'}$	22 23 24	$\begin{pmatrix} & & \\ b_{\text{box}(i,j)} \\ 40 \end{pmatrix} \xrightarrow{\not >} b_{\text{box}(i,j)} $	
ol	$r_{i} = r_{i'}$	$ \begin{array}{c} r_i = r_{i'} & {}^{16} & r_i = r_{i'} \\ s_k = s_{k'} & s_k \neq s_{k'} \end{array} $	81 - 814	$s_k = s_{k'}$ $s_k \neq s_{k'}$	
w-symb	$r_i \cong r_{i'}$	$ \begin{array}{c} r_i \cong r_{i'} & {}^{18} & r_i \cong r_{i'} \\ s_k = s_{k'} & s_k \neq s_{k'} \end{array} $	$S_k = S_k$	46-47	
10.	$r_i \approx r_{i'}$	$ \begin{array}{c} r_i \approx r_{i'} & 20 \\ r_i \approx r_{i'} \\ s_k = s_{k'} \\ 21 \end{array} \begin{array}{c} s_k \neq r_{i'} \\ s_k \neq s_{k'} \end{array} $	$s_k \neq s_{k'}$ 28 29	$s_{k} = s_{k'} \qquad \qquad$	
col-symbol	$c_j = c_{j'} c_j \not\cong c_{j'} c_j \ll c_{j'}$	$s_k = s_{k'}$ $s_k \neq s_{k'}$	$c_{j} = c_{j'} c_{j} \neq c_{j'} c_{j} \neq c_{j'}$ $s_{k} = s_{k'} s_{k} = s_{k'} s_{k} = s_{k'}$ 32 33 34 35 36 37 $c_{j} = c_{j'} c_{j} \neq c_{j'} c_{j} \neq c_{j'}$ $s_{k} \neq s_{k'} s_{k} \neq s_{k'} s_{k} \neq s_{k'}$	$s_{k} = s_{k'}$ $s_{k} = s_{k'}$ $s_{k} = s_{k'}$ $s_{k} \neq s_{k'}$ $s_{k} \neq s_{k'}$ $s_{k} \neq s_{k'}$	
box-symbol	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$s_{k} = s_{k'} \qquad s_{k} \neq s_{k'}$ $s_{k} = s_{k'} \qquad \varphi$ $s_{k} = s_{k'} \qquad \varphi$ $s_{k} = s_{k'} \qquad \varphi$ $s_{k} \neq s_{k'}$ $s_{k} \neq s_{k'}$ $s_{k} \neq s_{k'}$	$\begin{array}{c} & \uparrow \\ s_k = s_{k'} \\ s_k = s_{k'} \\ s_k \neq s_{k'} \\ s_k \neq s_{k'} \\ s_k \neq s_{k'} \end{array}$	$\begin{array}{c c} & & & & & \\ \hline & & & \\ \hline & & & \\ 62 \\ & & & \\ 63 \\ & & & \\ 64 \\ & & \\ \hline & & \\ 66 \\ & & \\ 67 \end{array} \xrightarrow{(b)} \begin{array}{c} & & \\ 64 \\ & & \\ 65 \\ \hline & & \\ 69 \end{array} \xrightarrow{(b)} \begin{array}{c} & & \\ & & \\ 65 \\ & & \\ 69 \end{array}$	

We found and stored **symbolic** structure constants for this coherent configuration using the following procedure:

- argue that they are all polynomials of degree ≤ 2 in each of h, w;
- directly compute all structure constants for the nine cases
 2 ≤ h, w ≤ 4;
- interpolate to arrive at symbolic expressions.

Fix two edges e, f which are related in some way. In picking a third edge having prescribed relations with each of e, f, we multiply two of:

- row choices $\in \{0, 1, h, h-1, h-2, n-h, n-2h\};$
- column choices $\in \{0, 1, w, w 1, w 2, n w, n 2w\};$
- symbol choices $\in \{0, 1, n, n-1, n-2\};$
- box choices $\in \{0, 1, h, h-1, h-2\} * \{0, 1, w, w-1, w-2\}.$

Spectral decomposition

Summary

Proposition

The eigenvalues of M are $\theta_j = jn$, j = 0, 1, ..., 4. Each eigenspace has a basis of eigenvectors consisting of vectors with entries in $\{0, \pm 1\}$.

—	—	—	-	—	—

• $\theta_1 = n$; eigenspace dimension $4n^2 - (2n - 3)(h + w) - 5n - 1$

• $\theta_1 = n$; eigenspace dimension $4n^2 - (2n - 3)(h + w) - 5n - 1$

• $\theta_1 = n$; eigenspace dimension $4n^2 - (2n - 3)(h + w) - 5n - 1$

• $\theta_2 = 2n$; eigenspace dimension (n-3)(h+w-1) + 2n

• $\theta_2 = 2n$; eigenspace dimension (n-3)(h+w-1) + 2n

• $\theta_2 = 2n$; eigenspace dimension (n-3)(h+w-1) + 2n

• $\theta_3 = 3n$; eigenspace dimension n + h + w - 3

+	+	+	+	+	+
—	—	—	—	-	—

• $\theta_3 = 3n$; eigenspace dimension n + h + w - 3

• $\theta_4 = 4n$; eigenspace dimension 1

н

Using orthogonal projections onto the eigenspaces, we can write

 $M = nE_1 + 2nE_2 + 3nE_3 + 4nE_4.$

Using orthogonal projections onto the eigenspaces, we can write

$M = nE_1 + 2nE_2 + 3nE_3 + 4nE_4.$

Let *K* denote projection onto the kernel. For $x \in \mathbb{R}$, we can invert the additive shift $A = M + \frac{n}{x}K$ as

$$A^{-1} = \frac{1}{n} \left(xK + \sum_{j=1}^{4} \frac{1}{j} E_j \right).$$

With the help of computer, the choice x = 3/2 minimizes

$$\|A^{-1}\|_{\infty} = \frac{15}{4n} - \frac{7(h+w)}{8n^2} - \frac{4}{9n^2} + \frac{31(h+w) - 21}{72n^3} < \frac{15}{4n}.$$

Perturbation

Lemma

Let A be an $N \times N$ invertible matrix over the reals. Suppose $A - \Delta A$ is a perturbation. Then

- $A \Delta A$ is invertible provided $||A^{-1}\Delta A||_{\infty} < 1$; and
- the solution $\vec{\mathbf{x}}$ to $(A \Delta A)\vec{\mathbf{x}} = A\vec{\mathbf{1}}$ is entrywise nonnegative provided $\|A^{-1}\Delta A\|_{\infty} \leq \frac{1}{2}$.

Lemma

Let A be an $N \times N$ invertible matrix over the reals. Suppose $A - \Delta A$ is a perturbation. Then

- $A \Delta A$ is invertible provided $||A^{-1}\Delta A||_{\infty} < 1$; and
- the solution $\vec{\mathbf{x}}$ to $(A \Delta A)\vec{\mathbf{x}} = A\vec{\mathbf{1}}$ is entrywise nonnegative provided $\|A^{-1}\Delta A\|_{\infty} \leq \frac{1}{2}$.

Proof idea.

Use the series expansion
$$(A - \Delta A)^{-1} = \sum_{k=0}^{\infty} (A^{-1} \Delta A)^k A^{-1}.$$

Let S be an ϵ -dense partial Sudoku of type (h, w), where hw = n. Define M_S similarly to M, so that $M_S(e, f)$ records the number of available tiles $\{r_i, c_j, s_k, b_\ell\}$ containing $e \cup f$. Let S be an ϵ -dense partial Sudoku of type (h, w), where hw = n. Define M_S similarly to M, so that $M_S(e, f)$ records the number of available tiles $\{r_i, c_j, s_k, b_\ell\}$ containing $e \cup f$.

Here is a white lie*, but morally true:

Proposition

 $\|M-M_S\|_{\infty}<12\epsilon n.$

*: we need to use a border to make M_S and M have the same dimensions

Theorem

Let $\epsilon < 1/101$. For sufficiently large h and w, every ϵ -dense partial Sudoku of type (h, w) has a **fractional** completion, that is, an assignment of positive rational frequencies to symbols in unfilled cells so that the Sudoku conditions hold.

Theorem

Let $\epsilon < 1/101$. For sufficiently large h and w, every ϵ -dense partial Sudoku of type (h, w) has a **fractional** completion, that is, an assignment of positive rational frequencies to symbols in unfilled cells so that the Sudoku conditions hold.

We show $M_S \vec{\mathbf{x}} = \vec{\mathbf{1}}$ has an entrywise nonnegative solution $\vec{\mathbf{x}}$. We shift the coefficient matrix by a multiple of K and view it as a perturbation of A (the 'empty' Sudoku).

Letting ΔA be this perturbation, we succeed when

$$\|A^{-1}\Delta A\|_{\infty} < \frac{15}{4n} \times 12\epsilon n + \frac{11}{2}\epsilon + o(1) = \frac{101}{2}\epsilon + o(1) < \frac{1}{2}$$

Wrap-up

• Some details on bordering our matrices have been suppressed for clarity.

- Some details on bordering our matrices have been suppressed for clarity.
- If the boxes are asymptotically thin (say *w* fixed and *n* = *hw* large), then the bundle condition can be dropped.

- Some details on bordering our matrices have been suppressed for clarity.
- If the boxes are asymptotically thin (say *w* fixed and *n* = *hw* large), then the bundle condition can be dropped.
- A structure of wiggly but 'near-rectangular' boxes can be handled via a secondary perturbation.

- Some details on bordering our matrices have been suppressed for clarity.
- If the boxes are asymptotically thin (say *w* fixed and *n* = *hw* large), then the bundle condition can be dropped.
- A structure of wiggly but 'near-rectangular' boxes can be handled via a secondary perturbation.
- Can this sparsity threshold for fractional completion be converted into something for actual completion?

Thank you!

- P.J. Dukes and K.I. Nimegeers, The linear system for Sudoku and a fractional completion threshold, https://arxiv.org/abs/2310.15279.
- R.A. Horn and C.R. Johnson, Matrix analysis, 2nd ed. Cambridge University Press, Cambridge, 2013.
- SageMath, the Sage Mathematics Software System (Version 9.3), The Sage Developers, 2021, http://www.sagemath.org.
- T. Sander, Sudoku graphs are integral. *Electron. J. Comb.*, 16 (2009), research paper N25, 7 pp.