Pretty good fractional revival via magnetic fields: theory and examples

Gabor Lippner

Algebraic Graph Theory Seminar

January 22, 2024

Northeastern University

Joint work with Whitney Drazen and Mark Kempton

- 1. {CCDEGKLTZ} Fundamentals of fractional revival LAA 655 (2022) 129–158.
- 2. {DKL} Pretty good fractional revival via magnetic fields: theory and examples, arXiv:2311.18143, 2023 November

Overview

- 2 Kronecker condition
- In the second second

Introduction Kronecker condition tional cospectrality?

Overview

- 2 Kronecker condition
- In the section of the section of

Quantum walk

- G(V, E) finite graph
- H is an associated Hamiltonian
- ► For us H = A + Q where Q is a diagonal matrix describing the potential

Study evolution of

$$U(t) = \exp(itH)$$

▶ 1-excitation subspace of a spin network

State Transfer vs Fractional Revival

- State transfer: u, v ∈ G, at some time t one looks for |U(t)(u, v)| = 1.
- Motivation: quantum information is transferred from u to v.

State Transfer vs Fractional Revival

State transfer: u, v ∈ G, at some time t one looks for |U(t)(u, v)| = 1.

• Motivation: quantum information is transferred from u to v.

Fractional revival: $u, v \in G$, at some time t one looks for

$$U(t)|_{\{u,v\}} = \begin{pmatrix} a & b \\ b & a' \end{pmatrix} = Z$$

where $|a|^2 + |b|^2 = |a'|^2 + |b|^2 = 1$ so Z is unitary.

Motivation: at this time nodes u, v are in an entangled state given by Z.

• Note: state transfer is the special case of a = a' = 0.

Fractional Revival in subsets

• Let
$$S \subset G$$
 be a set of nodes.

▶ The Hamiltonian *H* has *S*-fractional revival at time *t* if

$$U(t) = \left[egin{array}{cc} Z & 0 \ 0 & Z' \end{array}
ight]$$

where Z is an $S \times S$ unitary matrix.

7/32

Fractional Revival in subsets

• Let
$$S \subset G$$
 be a set of nodes.

▶ The Hamiltonian *H* has *S*-fractional revival at time *t* if

$$U(t) = \left[egin{array}{cc} Z & 0 \ 0 & Z' \end{array}
ight]$$

where Z is an $S \times S$ unitary matrix.

- This is clearly a generalization of fractional revival between two nodes.
- Can be used to generate entanglement among more than 2 particles.

- Consider the closure of $\{U(t)|_{S} : t \in [0,\infty)\}$.
- Is there a unitary matrix in the closure?

- Consider the closure of $\{U(t)|_{S} : t \in [0,\infty)\}$.
- Is there a unitary matrix in the closure?
- Caveat: identity matrix is always in the closure!
- Need a matrix with ≥ 2 distinct eigenvalues.

8/32

In summary...

Definition (PGFR)

We say that a set of nodes $S \subset V(G)$ has pretty good fraction revival if

 $\mathsf{cl}\{exp(itH)_{S\times S}:t\geq 0\}\cap U(S) \not\subseteq \{\rho \, \mathsf{Id}_{S\times S}: \rho \in \mathbb{C}\}$

In summary...

Definition (PGFR)

We say that a set of nodes $S \subset V(G)$ has pretty good fraction revival if

 $\mathsf{cl}\{exp(itH)_{S\times S}:t\geq 0\}\cap U(S) \not\subseteq \{\rho \, \mathsf{Id}_{S\times S}: \rho \in \mathbb{C}\}$

Caveat:

Would a diagonal block be interesting? No!

In summary...

Definition (PGFR)

We say that a set of nodes $S \subset V(G)$ has pretty good fraction revival if

 $\mathsf{cl}\{exp(itH)_{S\times S}:t\geq 0\}\cap U(S) \not\subseteq \{\rho \, \mathsf{Id}_{S\times S}: \rho \in \mathbb{C}\}$

Caveat:

Would a diagonal block be interesting? No!

But it turns out, for connected graphs, it never happens!

Overview

In the section of the section of

4 Examples

Partitioning the spectrum

- Eigenvectors of $H \Longrightarrow$ eigenvectors of Z
- $exp(it\lambda) \approx \rho$
- Identical restrictions
- Partition Π₀, Π₁, ..., Π_s of the spectrum of *H*. It is independent of *Z*.
- Generated by the eigenvalue support Φ:

 $(\lambda_i, \lambda_j) \in \Phi \Leftrightarrow E_i D_S E_j \neq 0$

Partitioning the spectrum

- Eigenvectors of $H \Longrightarrow$ eigenvectors of Z
- $exp(it\lambda) \approx \rho$
- Identical restrictions
- Partition Π₀, Π₁, ..., Π_s of the spectrum of *H*. It is independent of *Z*.
- Generated by the eigenvalue support Φ:

 $(\lambda_i, \lambda_j) \in \Phi \Leftrightarrow E_i D_S E_j \neq 0$

Non-degenerate partition

To have PGFR we need a non-degenerate partition:

- 1. Unit complex numbers ρ_1, \ldots, ρ_s that aren't all the same.
- 2. A sequence of times at which $\exp(it\lambda) \rightarrow \rho_j$ for all $\lambda \in \Pi_j$

Non-degenerate partition

- To have PGFR we need a non-degenerate partition:
 - 1. Unit complex numbers ρ_1, \ldots, ρ_s that aren't all the same.
 - 2. A sequence of times at which $\exp(it\lambda) \rightarrow \rho_j$ for all $\lambda \in \Pi_j$
- S-Kronecker condition: the partition is non-degenerate if and only if ∃1 ≤ r₁ < r₂ ≤ s such that there is no sequence of integers l_i for which

1.
$$\sum_{j \in \Pi_r} l_j \lambda_j = 0$$

2. $\sum_{j \in \Pi_r} l_j = 0$ for $r \neq r_1, r_2$
3. $\sum_{j \in \Pi_{r_1}} l_j = 1$ and $\sum_{j \in \Pi_{r_2}} l_j = -1$.

Kronecker proof I

If $\rho_1 \neq \rho_2$ then the system is unsolvable for $r_1 = 1, r_2 = 2$.

Kronecker proof I

If $\rho_1 \neq \rho_2$ then the system is unsolvable for $r_1 = 1, r_2 = 2$.

Kronecker proof II

If the system is unsolvable for $r_1 = 1, r_2 = 2$ then there is a good subsequence for which $\rho_1 \neq \rho_2$.

Kronecker proof II

If the system is unsolvable for $r_1 = 1, r_2 = 2$ then there is a good subsequence for which $\rho_1 \neq \rho_2$.

Field-trace method

- How to verify the Kronecker condition?
- The only method we know: field trace

Required setup:

- 1. Find polynomials P_1, \ldots, P_s such that the roots of P_j are exactly the elements of Π_j .
- 2. Find a field in which these are irreducible.
- **3**. Find two values r_1 , r_2 so that

$$\frac{\operatorname{tr} P_{r_1}}{\deg P_{r_1}} \neq \frac{\operatorname{tr} P_{r_2}}{\deg P_{r_2}}$$

Overview

- 2 Kronecker condition
- In the second second

4 Examples

Z-cospectral subsets

How to find such polynomials? Cospectrality!

Definition

The subset S is Z-cospectral if there is an orthonormal basis $\psi_1, \ldots, \psi_{|G|}$ of eigenvectors of H such that the restrictions of these to S are all eigenvectors of the $S \times S$ matrix Z.

Remark

The "strong" analogue would be to require this for every eigenvector, not just a basis.

For
$$Z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 we recover the classic notion.

Equivalent characterizations

Let $S \subset G, H, Z$ as above. The following are equivalent:

- 1. S is Z-cospectral.
- 2. $Z\widetilde{H^k} = \widetilde{H^k}Z$ for all k.
- **3**. $Z\tilde{E}_i = \tilde{E}_i Z$ for all *j*.
- 4. $F_j \tilde{E}_i = \tilde{E}_i F_j$ for all i, j.
- 5. For any v, w eigenvectors of Z belonging to different eigenvalues, the subspaces $\langle H^k \hat{v} : k = 0, 1, \ldots \rangle$ and $\langle H^k \hat{w} : k = 0, 1, \ldots \rangle$ are orthogonal.

The case of simple eigenvalues

- When Z has only simple eigenvalues, the theory becomes very useful. Important: Z does not have to be symmetric, only normal!
- The relative minimal polynomials of the eigenvectors of Z become the P_j polynomials.
- Adding a generic diagonal potential to the subset preserves cospectrality and makes the polynomials irreducible.
- ▶ All that remains is to verify the trace/degree condition.

What happened to "parallel" ?!

What happened to "parallel" ?!

Theorem

The eigenvalue support Φ is the same as pairs of roots of the P_j polynomials.

Overview

- 2 Kronecker condition
- In the section of the section of

2-vertex

- These examples were first found by computer search.
- They can be easily verified using the minimal polynomial approach.
- Due to their nature, degree and trace are easily computable.

25 / 32

Computing \tilde{H}^k

Computing \tilde{H}^k

- How to get examples of PGFR on bigger subsets?
- Currently our only examples are graphs with a \mathbb{Z}_p symmetry.
- Fractional cospectrality is easy to verify with respect to the A_{DC_p}, the adjacency matrix of the directed cycle graph. This is non-symmetric, but normal, and has simple eigenvalues.
- We need

$$\frac{\operatorname{tr} P_1}{\operatorname{deg} P_1} \neq \frac{\operatorname{tr} P_2}{\operatorname{deg} P_2}$$

Since trace always contains the transcendental Q, it's enough to have different degrees, or different traces if the degrees are equal.

28 / 32

Examples with different degrees

Examples with different traces

Further directions

Problem

Is there a way to determine the trace/degree of the P_j polynomials? A useful combinatorial theory is still lacking!

Problem

Find examples without automorphisms for $|S| \ge 3$.

The End

Thank you!

